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ABSTRACT 
Damper models used in Multi Body Dynamics simulations of tracked 

vehicles are commonly defined solely by damper curves, that is stabilized damper 
reaction torque as a function of steady state velocity. In reality, the achievement of 
the stable reaction torque lags behind damper curve torque upon attainment of a 
given velocity. As detailed in this paper, the idealization to reduce damper 
performance to a “damper curve” cannot produce an accurate representation of 
the two primary terrains military vehicles are designed against: half-round and 
ride quality courses. By introducing “compliance” and “lash”, the damper 
performance can be accurately represented. With the slight extension of this model 
to a fully physics based one, future dampers can be designed to expand the 
operating performance envelope of tracked vehicles. 
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1. INTRODUCTION 

U.S. Army Ground Vehicle Systems Center 
(GVSC) conducted vehicle experiments in 
2022 at Yuma Proving Ground (YPG) and it 
was found that load correlation between 
instrumented arms of tracked vehicles and 
the simple models of springs and dampers 
that are traditionally used in multi body 
dynamics (MBD) simulations have 
incredibly poor correlation for damped 
stations yet excellent for undamped stations. 
This difference is due to the traditionally used  
models being poor predictors of actual 
reaction torques of dampers. 

These same models are also used during the 
design phase of vehicle development where 
damper response is tuned to maximize 

percieved ride quality over terrains, and limit 
accelerations over discrete events like half-
rounds. After vehicles are produced they are 
then evaluated against these two conditions 
per TOP-1-1-014 [1].  

It is expected that dampers are improperly 
tuned because of this gap between actual and 
modeled damper performance. This 
ultimately limits vehicle mobility by making 
the ride unnecessarily uncomfortable. 

With these motivations GVSC proceeded to 
conduct bench testing to identify the root 
cause of the deficiency in the damper 
modeling practice and develop a damper 
model that accurately represents damper 
performance with the minimum possible 
complexity. 
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2. BACKGROUND 
GVSC began this investigation using a 

tester specifically developed for tracked 
vehicle suspensions.  
2.1. GVSC Damper Test System 

As discussed in a GVSETS paper from 
2021 [2], a test system was developed to test 
complete trailing arm assemblies and has 
proven valuable to excite failure modes of 
road arm durability and bearing wear.  

Figure 1. Test System from GVSETS 2021 Paper 

This tester was modified to conduct damper 
evaluation by replacing the full trailing arm 
assembly with one cut short but retaining all 
upper spindle (trunnion) interfaces. With this 
update, the rotary actuator now directly 
drives the damper in the actual suspension 
housing.  

Additionally, a closed loop heated oil 
system was installed to control housing 
temperature by providing approximately 24 
Gallons Per Minute (GPM) oil flow from a 
reservoir with PID controlled heaters capable 
of maintaining temperatures ranging from 
unheated (~70F) to 350F. In Figure 2, arrows 
indicate the oil inlet (blue), oil outlet 
(orange), and two housing oil monitoring 
thermocouples (red). 

Figure 2. Damper Test System. 

 
Because of the excellent performance 

envelope of this test setup, the damper 
reaction torques from actual time/angle series 
data from the field, over durability and half 
round courses, as well as traditional damper 
sinusoids and ramps could be found.  
2.2. Damper Model Summaries 

As previously stated, the baseline 
traditional model provided a poor prediction 
of reaction torques. This model consists of a 
four-part piecewise linear damper curve: high 
speed compression (jounce), low speed 
compression, low speed extension (rebound), 
and high-speed extension. 

In Section 4 an updated model which 
improves upon the traditional one by 
replacing the low speed linear regions with 
quadratic dominated ones is introduced. In 
extension the model is quadratic. In 
compression it is quadratic up until a critical 
velocity, and beyond this velocity it is linear. 
Additionally, a term for friction is 
introduced.  

In Section 5 an updated compliant model is 
introduced, which addresses the two critical 
phenomena missing from the traditional and 
updated damper curve models: lash and 
compliance. 

"Lash” refers to a finite travel low stiffness 
region that is observed at low values of torque 
when the system changes direction.  

“Compliance” refers to the non-
instantaneous building and decaying of 
reaction torque as damper velocity changes. 
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Figure 3 shows a hysteresis plot of angle and 
damper reaction torque as the damper is 
cycled through ramp functions. The 
characteristic “lash” and “compliance” are 
evident. 

Figure 3. Typical Torque Response Hysteresis Plot  

 
2.3. Damper Model Performance 

In this section a series of cross plots of angle 
and damper reaction torque are shown. 
Within each figure the laboratory test data is 
blue and model predictions are orange. The 
first figure is the traditional model, which is 
followed by the updated model, and then the 
updated compliant model. 

Figure 4 shows that all three models provide 
a good estimation of the steady state 
(constant velocity) torque response for a 
ramp function at high speeds, however only 
the updated compliant model captures the 
lash and compliance characteristic.  

Figure 4. Model Comparison with High Velocity (25 
deg/sec) Ramp Input 

 

 

 
Figure 5 shows for ramp functions at low 

velocities (1 deg/sec). The lash and 
compliance characteristics are nearly 
negligible, hence the strong similarity of the 
updated and updated compliant models to the 
test result. However, the traditional model 
deviates significantly from the test data.  
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Figure 5. Model comparison with Low Velocity (1 
deg/sec) Ramp Input 

 

 

 
The angle versus time profile over a 

practical half-round event shown in Figure 6. 

The half-round event provides the most 
dramatic comparison of these three models.  

 
Figure 6. Time-Angle Test Condition, 8" Half Round Test 

 
The model torques over this event are 

compared to the actual component reaction 
torque in Figure 7.  

 
Figure 7. Model Comparison Histograms with Half round 

Test Input 
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The difference between model prediction 

and recorded reaction torque is shown in the 
cross-plots of Figure 8. Included in these 
Figures are the reference line of zero error, 
when model prediction and recorded reaction 
torque exactly match, in black and +/- 50,000 
in*lbf in red. 
Figure 8. Model Comparison Cross-Plots with Half Round 
Test Input 

 

 

 
The half round example is a practical test 

which is critical to accurately predict when 
designing vehicles. The traditional model 
and updated model are incredibly poor 
predictors as shown, with errors exceeding 
+/- 250,000 in-lbf.  

The updated compliant model provides a 
very good prediction but has a slight over 
prediction of reaction torque magnitudes. 
This slight over prediction is expected based 
on the method used to generate the damper 
curve as clarified in Section 3. Further model 
tuning could be conducted and would lead to 
an improved prediction.    

 
3. DAMPER CURVE GENERATION  

Damper reaction torque data for generating 
the updated damper curve was collected on 
the test bench by running triangle (ramp) 
wave forms of amplitude 10 degrees at 
various angular rates.  

One single damper was used for the 
characterization described in this section was 
well as generation of all datasets discussed in 
the entirety of this paper. 
3.1. Initial Testing 

The speeds specified in Table 1 were ran 
starting from three stabilized thermal states: 
ambient (~70F), 250°F and 350°F. 
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Table 1. Bench Test Input Parameters 
Ramp Rate 

[deg/s] 
±0.05 
±0.1 
±0.5 
±1 
±5 
±10 
±25 
±50 
±100 
±200 

Raw position and torque channels collected 
from instrumentation were processed before 
use by forward and backward filtering using 
a low pass Butterworth filter. 

Table 2. Butterworth Filter Parameters 
Sample Rate 2000 Hz 

Filter Frequency 400   Hz 
Filter Order 4 

3.2. Smoothing of Velocity 
To calculate the reaction force from a 

damper curve, the angular velocity of the 
rotor must be known and derived from the 
raw time angle signals. Because the raw time 
angle signals from both laboratory and 
vehicle testing are noisy, they produce non-
physical velocities. The method to establish 
angular velocity from time-angle signals in 
this paper is to gather subsets of data ranging 
from 10ms in the past to 10ms in future 
corresponding to each time step. Then a 
quadratic polynomial is fit to this vector of 
angle data and the analytical value of velocity 
at this time step is calculated from 
polynomial coefficients. The specific 
implementation of this algorithm in Python is 
given in Appendix 1. 
3.3. Testing Limitations 

Test stand limitations began to reduce the 
achieved angular amplitudes for 50 deg/sec 
and higher but the angular velocities during 
the constant velocity portions of the ramps 
still fell within ±10% of the intended rate.  

Since these datasets achieved steady state 
reaction torques, the achieved minimum and 
maximum torque at each intended velocity 
were used to establish the damper curve. 
These values for the three thermal conditions 

are given in Table 3 and are shown 
graphically in Figure 9. 

 
Table 3. Temperature Variation with Ramp Input 

 
  

Figure 9. Damper Curve Generated in Initial Bench 
Testing 

 

 
Comparing the results at the three different 

temperatures, velocity amplitudes 25 deg/sec 
and higher have very consistent reaction 
torques, differing at most by 5 %.  

At intermediate velocities, ±5 and ±10 deg 
/sec, no clear trend exists, and massive 
differences are observed. 
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For very small velocities, 1 deg/sec and 
less, there is a general trend of higher 
resistance as temperatures grow but the trend 
is relatively weak. 

Figure 10 shows an example of the 0.1 
deg/sec condition where ambient and 250°F 
are similar but 350°F has substantially more 
resistance, in compression only.  

 
Figure 10. Temperature Variation at Low Velocities 

 

 

 
 

As will later be established, the large 
velocities correspond to when the pressure 
relief valves of the damper are active, 
consistent temperature independent 
performance is observed. However, the 
performance at lower velocity amplitudes 
does not have an obvious temperature 
dependence. 

Temperature as not investigated any further 
in this study as a factor. Only the data for 
initial temperature of 250°F was used for 
development of the damper curve. 
3.4. Refinement of Initial Testing 

The initial data set provided poor 
refinement in the low velocity (±25 deg/s) 
region. Utilizing the same rotary damper and 
test setup as before, additional testing was 
conducted to fill in the gaps between existing 
points.  

Table 4. Bench Re-Test Input Parameters 
Input 

Function 
Target 

Velocity 
[deg/s] 

Temperature 
[°F] 

Ramp Range of [1,50] in 
1 deg/s increments 

250 

This second set of testing for ±1 and ±5 
deg/sec was within 22% of the first.  

As apparent in Figure 11, significant 
differences were observed for the ±10 
deg/sec speeds. These speeds in the first set 
of testing had massive jumps in reaction 
torques as temperatures varied. 
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Figure 11. Test and Retest Point Comparison 

 
 
4. DAMPER CONFIGURATION AND 
MODELING MOTIVATION 
4.1. Damper Construction 

The general construction of dampers used in 
tracked vehicles are rotors with two lobes 
within a stator which creates two sets of oil 
cavities. This geometry is reflected in the 
functional diagram from [3] where two oil 
cavities “A” and “B” are shown as well as the 
additional features of orifice restrictors, tip 
seals, and pressure relief valves (PRVs).  

Figure 12. Damper Cross-Section 

 
Note this diagram is a great simplification 

of the assembly but does contain all 

necessary elements for this discussion. Some 
non-essential additional components are 
seals in the axial direction, bearings to 
maintain the rotor position relative to the 
stator, and external oil makeup channels.  

In typical damper implementations there is 
negligible flow past any of the seals within 
the damper to maintain consistent 
performance and have good seal durability. 
Thus, the only flow paths possible between 
cavities A and B are normally through the 
PRVs and orifices. 

 
Figure 13. Oil Flow-paths within Damper 

 
There are typically two sets of PRVs, a set 

for the extension direction and a differently 
configured set for the compression direction. 
These valves permit no flow until a threshold 
pressure is achieved. Once flow commences 
the restriction is typically linear with flow 
rate.  

At low velocities the PRVs do not permit 
any flow, thus oil can only flow through the 
orifices. It has been shown that this flow 
restriction depends on the particular 
geometric details of the of the orifices. As 
with other internal flow problems the 
restriction would be expected to fall between 
a linear response due to internal laminar flow 
(viscous dominated) and due expansion and 
contraction losses or higher flow rates be 
quadratic. Some orifices like sharp edged 
ones the linear region may be imperceivable. 

 The design of the rotary damper tested in 
this paper is somewhat anomalous because 
there are no orifices to control low velocity 
damping. Instead, low velocity damping is 
“controlled” by leakage past the seals until 
sufficient pressure builds to trigger PRV 
flow. 

It would be expected that initially the flow 
restriction past the seals should be quadratic 
like a sharp-edged orifice, and this response 
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for low velocities was observed. At higher oil 
flow rates in the compression direction a 
characteristic change was observed which 
may be due to improved engagement of the 
seal. In the compression direction two 
distinct regions were observed: initially a 
quadratic response, then a high slope linear 
response. 

Finally, the bearings and seals of the system 
would be expected to have a friction like 
behavior. 

In summary, the friction and flow paths 
restrictions should be sufficient to capture the 
steady state response.  

For transient performance two additional 
considerations are needed. First since the 
rotary damper is driven via a set of splines, 
some lash behavior is expected. Also, the oil 
and structure of the damper are not rigid, 
some compliance is expected.  
4.2. Steady state versus transient model 

In steady state conditions, flow directly 
relates to angular velocity, however in 
transient conditions this is generally not the 
case.  

Before deriving the updated damper model 
two necessary internal variables are 
introduced to separate the lash, compliance, 
and damper curve elements. 
The variable XExt is the external “real world” 

angular position of the rotor. XRot is 
introduced to enable the deviation of the 
external angle from the actual rotor angle due 
to lash in the system. Lastly XOil enables 
incorporation of compliance. 

Figure 14. Damper Compliance Model 

 
At the limit of infinitely stiff klash and koil 

this model degenerates to the traditional 
approach where XExt = XOil.  
4.3. Steady state model 

This section deals specifically with creating 
the steady state model tuned to the data of 
Section 3 (Damper Curve Generation) which 

returns a reaction torque for a given angular 
velocity. 

In this model the units are torque (in-lbf), 
angle (deg), and angular velocity (deg/sec). 
Upon introduction of effective radii, this 
model can be alternatively expressed as 
pressure, volume, and volumetric flow rates. 
These then have physical meanings that later 
could be used by engineers to explore damper 
designs. The primary characteristics that 
would be varied during design work are PRV 
cracking pressures and flow restrictions for 
high speeds as well as orifice coefficient and 
exponent for low speeds. 

In the next section the terms pressure and 
flow are used interchangeably with torque 
and angular velocity in order to make the 
derivation easier to follow. 
4.4. Steady state model flow regimes 

This section details the mathematical 
method to replicate the damper curve 
response described in the previous section.  

Following from Figure 13 there are two 
flow paths, one through the PRVs (𝑣𝑣𝑃𝑃𝑃𝑃𝑃𝑃) and 
one through the orifice �𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜�. The total flow 
(𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡) from cavity “A” to cavity “B” is the 
sum of these two parallel paths. 

 
𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑣𝑣𝑃𝑃𝑃𝑃𝑃𝑃 [deg/sec]  (1) 
 

The reaction torque of the damper occurs 
due to a difference in pressures between the 
two cavities acting over a loaded area of the 
two rotors. This delta pressure is identical for 
the two flow paths and its related measure, 
reaction torque (𝜏𝜏): 

 
𝜏𝜏 = 𝜏𝜏𝑜𝑜𝑟𝑟𝑖𝑖𝑖𝑖 = 𝜏𝜏𝑃𝑃𝑃𝑃𝑃𝑃 [in-lbf]  (2) 
 

The friction behavior of the damper in this 
model is lumped into the orifice path 
restriction based on the observed response. 
Thus, the restriction of flow through the 
orifice path includes three terms: an always 
active quadratic restriction with coefficient 
A, friction that opposes motion with 
coefficient B, and for flows which exceed the 
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critical level C an additional linear restriction 
D. 

𝜏𝜏 = 𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠�𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜� ∗ 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜2    (3) 
+𝐵𝐵 𝑠𝑠𝑠𝑠𝑠𝑠�𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜�  
+𝐷𝐷 ∗ 𝑚𝑚𝑚𝑚𝑚𝑚�𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝐶𝐶, 0� [in-lbf]  
 

The dimensionality of these parameters are 
as follows: 

 
[𝐴𝐴] = [

𝑖𝑖𝑖𝑖 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙

�𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠  𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�
2] 

[𝐵𝐵] =  [𝑖𝑖𝑖𝑖 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙] 

[𝐶𝐶] = [
𝑑𝑑𝑑𝑑𝑑𝑑
𝑠𝑠

𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓]  

[𝐷𝐷] = [ 𝑖𝑖𝑖𝑖∗𝑙𝑙𝑙𝑙𝑙𝑙

�𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠  𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�
2] 

 
Note quadratic, friction, and linear terms all 

are dissipative, that is they result in torques 
that oppose flow. Thus, the coefficients A, B, 
and D are negative. Also note in this model 
that the convention is taken that compressive 
flow is positive, so the value of C is positive. 

For low flow rates there is no PRV flow 
(𝑣𝑣𝑃𝑃𝑃𝑃𝑃𝑃 = 0). Beyond certain critical levels there 
are two active flow paths. Let us find what 
these critical flow rates are, starting with the 
compressive flow direction. 

As the compression direction flow builds, 
no flow through the PRV occurs until a 
critical value of orifice flow is met or 
exceeded. This critical compression flow rate 
is denoted 𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and occurs at a torque 
which is denoted 𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. For flows 
beyond the cracking torque threshold, the 
flow resistance is taken to linearly increase 
with additional flow through the compression 
PRV since this matches historical norms: 

 
𝜏𝜏 = 𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝑣𝑣𝑃𝑃𝑃𝑃𝑃𝑃   (4) 
 

Because the cracking torque 𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is a 
practical real-world design parameter that is 
easily and commonly controlled but the 
cracking flow rate 𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is not, 𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
will be retained as a model parameter and  

𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 eliminated by determining its value 
from other parameters.   

To this end, consider that at the critical 
compression flow rate 𝑣𝑣𝑃𝑃𝑃𝑃𝑃𝑃 = 0, and all flow 
is through the orifice 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 
For this condition, equating the reaction 
torque of equation 4 with the one of equation 
3 reveals a quadratic dependence of 
𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 on 𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐: 

 
𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐴𝐴 𝑣𝑣𝑐𝑐𝑜𝑜𝑜𝑜𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

2                      (5) 
+𝐷𝐷 𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + (𝐵𝐵 − 𝐷𝐷𝐷𝐷)  

 
Here it was used that compression flow is 

positive (𝑠𝑠𝑠𝑠𝑠𝑠�𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜� = 1) and proper values 
of parameters were assumed which gives the 
logical consequence that flow exceeds the 
critical level of C. Only one of the two 
solutions for 𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 in equation 5 
provides a flow exceeding C, revealing the 
critical value of compressive orifice flow: 

 
 𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =    (6) 
1
2𝐴𝐴

* �−𝐷𝐷 + �𝐷𝐷2 − 4𝐴𝐴�𝐵𝐵 − 𝐷𝐷𝐷𝐷 − 𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�� 

 
For larger flows, a torque balance 

𝐴𝐴 ∗ 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜2 + 𝐵𝐵 + 𝐷𝐷 ∗ �𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝐶𝐶�    (7) 
= 𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ (𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) 

Gives the relative flow split between orifice 
and compression PRV: 

(8) 
 

 
With similar reasoning for the extension 

direction, 𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑒𝑒𝑒𝑒𝑒𝑒 is found 
explicitly from other model parameters.  

 
          (9) 
 
 

 
(10) 

 
 

𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

=  
−�𝐷𝐷 +𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� + ��𝐷𝐷 +𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�2 − 4𝐴𝐴(𝐵𝐵 − 𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝐷𝐷𝐷𝐷 − 𝐹𝐹 ∗ 𝑣𝑣_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

2𝐴𝐴  

𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑒𝑒𝑒𝑒𝑒𝑒

=  
𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒 − �𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒2 − 4𝐴𝐴(𝐵𝐵 + 𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒 ∗ 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)

2𝐴𝐴
 

𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  
1

2𝐴𝐴
�−1 ∗ �−4𝐴𝐴�𝐵𝐵 − 𝜏𝜏𝑒𝑒𝑒𝑒𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�� 
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4.5. Numerical Issue with Friction Term 
Friction modeling with a strict dependence 

on the sign of velocity is a classical numerical 
challenge, the “stick-slip” condition. With 
the model of the previous section this issue 
arose leading to large and non-physical 
instantaneous changes in velocity. 

As is traditional this numerical difficulty 
was overcome by “softening” the response. 
Specifically, the approach to modify the term 
𝑠𝑠𝑠𝑠𝑠𝑠�𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜� in Equation 3 with a simple 
“smoothed” equivalent, hyperbolic tangent 
was done:  

𝑠𝑠𝑠𝑠𝑠𝑠�𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜� ≈ tanh ( 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜/𝑘𝑘) 
 
The parameter k is responsible for the 

“softening”. As shown in the following 
figure, the full response of 𝑠𝑠𝑠𝑠𝑠𝑠�𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜� = 1 is 
achieved at approximately 1/k which is also 
approximately the slope of the initial 
response about zero.  

 
Figure 15. Friction “Softening” 

 
A study was conducted varying the 

parameter k. In the baseline limit where k 
tends to infinity severe numerical issues were 
encountered. The smallest value considered 
(k = .005 deg/s) resolved these numerical 
difficulties within the python simulation 
environment used and represents an absurdly 
slow condition. The realistic travel of this 
damper is approximately 60 degrees. With a 
rate of .005 deg/sec moving through the full 
travel of the suspension would take in excess 
of three hours.  

This conclusion is not necessarily 
extensible to an MBD framework so higher 
values of k (softer response) may be 
appropriate elsewhere. Since the damper 

response for small velocities is not relevant 
from a design perspective it may actually be 
preferable to move to a even softer response 
like (k = .5 deg/s) where the full suspension 
travel would occur in two minutes.  
 
4.6. Invertibility of Damper Curve 
To implement the complaint model 
introduced in Section 6 a monotonic damper 
curve is desired such that the inversion is not 
ill defined. By inclusion of the softened 
response of Section 4.5 this condition is 
satisfied. 
  
4.7. Damper Curve Comparison 

The values of A, B, C, D, 𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 
𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, and 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒 were determined utilizing 
the optimization library included [4]. The 
minimize function was used to reduce the 
average error of the approximation relative to 
the damper curve points. Constraints were 
added to ensure a monotonic damper curve 
was retained. 
 
This procedure resulted in a model which 
very accurately represented the collected 
damper curve of section 3.  

Figure 16. Damper Curve Method Comparison 

 
 
5. DAMPER COMPLIANCE 
MODELING 

Despite a damper curve which reflects the 
steady state response of the damper with high 
accuracy, two critical characteristics are 
absent.  

At low values of torque as the system 
changes direction a finite travel low stiffness 
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𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑘𝑘𝑂𝑂𝑂𝑂𝑂𝑂 ∗ (𝑥𝑥𝑂𝑂𝑂𝑂𝑂𝑂𝑥𝑥𝑅𝑅𝑅𝑅𝑅𝑅)] 

region is observed. This “lash” within the 
system is independent of velocity. To add this 
to the model, a spring with a finite travel was 
added in line to the damper system, 
replicating the observed response. 
Also, a delay in growth and decay of 

damping reaction torque as observed. This 
observation is expected to be related to 
compression and decompression of oil within 
the damper. This phenomena was modeled 
with a high-stiffness spring in series with the 
damper. 
Incorporating both observations, a spring-

damper system was developed to consider 
lash and oil compliance within the system. 
XExt is the input radial position of the rotor, 
XRot is the post-lash position, and XOil 
incorporates the oil compliance. 

Figure 17. Damper Compliance Model 

 
To calculate the reaction force of the 

damper, the time series of XOil must be 
calculated by integrating a series of functions 
over the time array: 

• Given: 
o XExt is a position vector over 

time 
o ‘DampF’ is a function of 

velocity 
o ‘DampV’ the inverse of 

‘DampF’ 
o KLash has a low spring rate 
o KOil has a high spring rate 

• Calculate candidate for XRot via nodal 
analysis: 

(11) 
 

• XRot is limited in travel by the lash 
limit: 
 

(12) 
 

• The velocity of XOil is calculated and 
integrated: 
 

(13) 
 

• Using the XOil previously calculated, 
XRot is recalculated and limited 
(Equations 12,13). The torque on the 
damper is then calculated: 
 

(14) 
5.1. Model Results 

The updated compliant model provides a 
vast improvement in the modeling of the 
rotary dampers. By implementing oil and lash 
compliant factors, the updated compliant 
model correlation error on half round testing 
can be reduced to 16% of traditional 
modeling error: an average error band of 
±271,000 in*lbf down to an average of 
±45,000 in*lbf. Figure 18 displays an 
example of the reduction of correlation error 
on cross-plots for all three modeling 
methods.  

𝑥𝑥𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑘𝑘𝑂𝑂𝑂𝑂𝑂𝑂 ∗ 𝑥𝑥𝑂𝑂𝑂𝑂𝑂𝑂 + 𝑘𝑘𝐿𝐿𝐿𝐿𝐿𝐿ℎ ∗ 𝑥𝑥𝐸𝐸𝐸𝐸𝐸𝐸

𝑘𝑘𝐿𝐿𝐿𝐿𝐿𝐿ℎ ∗ 𝑘𝑘𝑂𝑂𝑂𝑂𝑂𝑂
 

𝑥𝑥𝑅𝑅𝑅𝑅𝑅𝑅 = �
𝑥𝑥𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑥𝑥𝐸𝐸𝐸𝐸𝐸𝐸 <  −𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝐿𝐿𝐿𝐿𝐿𝐿 𝑥𝑥𝐸𝐸𝐸𝐸𝐸𝐸 − 𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝐿𝐿𝐿𝐿𝐿𝐿

−𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝐿𝐿𝐿𝐿𝐿𝐿 < 𝑥𝑥𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑥𝑥𝐸𝐸𝐸𝐸𝐸𝐸 < 𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝐿𝐿𝐿𝐿𝐿𝐿 𝑥𝑥𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝐿𝐿𝐿𝐿𝐿𝐿 < 𝑥𝑥𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑥𝑥𝐸𝐸𝐸𝐸𝐸𝐸 𝑥𝑥𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝐿𝐿𝐿𝐿𝐿𝐿

� 

𝑥𝑥𝑂𝑂𝑂𝑂𝑂𝑂 =  �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑘𝑘𝑂𝑂𝑂𝑂𝑂𝑂 ∗ (𝑥𝑥𝑂𝑂𝑂𝑂𝑂𝑂𝑥𝑥𝑅𝑅𝑅𝑅𝑅𝑅)]𝑑𝑑𝑑𝑑 
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Figure 18. Model Comparison Detailing Correlation to 
Measured Torque 

 

 

 
The time series response shows a vast 

improvement, as seen in Figure 19. 

Figure 19. Model Comparison Displaying Time Series 

 

 

 
6. Conclusion 

The updated compliant model provides a 
very good prediction but has a slight over 
prediction of reaction torque magnitudes. By 
introducing “compliance” and “lash”, the 
damper performance can be accurately 
represented. With the slight extension of this 
model to a fully physics based one, future 
dampers can be designed to expand the 
operating performance envelope of tracked 
vehicles. 
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Appendix I. Python Code: Derivative Method from Tim Hunter at Wolf Star Tech, Modified by Kenneth Redner for use in Rotary 
Damper Curve Generation  

import numpy as np 
def tfuDiff(xyData, deriv = 1, smoothPts=20, polyOrder = 3, yTol=0.0, symmetryFlag=True, minPts=1): 
    """ 
    tfuDiff calculates the derivative of the given functions by approximating the function as polynomial over the 
    user specified segments. The derivative may be first or second order derivatives. 
    Parameters: 
    ---------- 
        tfuDict: Dictionary of xyData pairs to be processed 
        tfuOrder: List of keys in the dictionary of xyData pairs to be processed 
        deriv: The order of the derivative. Allowable values are 1 or 2 
        smoothPts: Number of points to be used in the polynomial fitting 
        polyOrder: The order of the polynomial to be fit 
    Returns: 
    -------- 
        diffDict, diffOrder - xyData dictionary and keys containing derivatives and the approximated curves 
 
    Usage: 
    ------ 
        diffDict, diffOrder = tfuDiff(tfuDict, tfuOrder, deriv=1, smoothPts=20, polyOrder=3) 
 
    """ 
    if polyOrder > smoothPts: 
            polyOrder = smoothPts 
    #end if 
 
    diffDict = {} 
    diffOrder = [] 
 
    x, y = zip(*xyData) 
    x = np.array(x) 
    y = np.array(y) 
    nPts = len(x) 
    yDots = [] 
    y2Dots = [] 
    yApproxs = [] 
    for i in range(nPts): 
        iStart = i - smoothPts 
        if iStart < 0: 
            iStart = 0 
        # end if 
        iEnd = i + smoothPts 
        if iEnd >= nPts: 
            iEnd = nPts - 1 
        # end if 
        if yTol != 0: 
            trgtVal = y[i] 
            for iTest in range(i, iStart, -1): 
                testVal = y[iTest] 
                if np.abs(testVal - trgtVal) > yTol: 
                    iStart = iTest 
                    break 
                #end if 
            #end iTest 
            for iTest in range(i, iEnd): 
                testVal = y[iTest] 
                if np.abs(testVal - trgtVal) > yTol: 
                    iEnd = iTest 
                    break 
                #end if 
            #end iTest 
            if symmetryFlag: 
                backDiff = i - iStart 
                forwardDiff = iEnd - i 
                if backDiff != forwardDiff: 
                    minDiff = min(backDiff, forwardDiff) 
                    iDistStart = i 
                    iDistEnd = nPts - i 
                    minDist = min(iDistStart, iDistEnd) 
                    if minDiff > minDist: 
                        minDiff = minDist 
                    #end if 
                    if minDiff == 0: 
                        minDiff = max(backDiff, forwardDiff, minDist) 
                    #end if 
                    iStart = i - minDiff 
                    iEnd = i + minDiff 
                    if iStart < 0: iStart = 0 
                    if iEnd > nPts: iEnd = nPts 
                #end if 
            #end if 
            if i - iStart < minPts: 
                iStart = i - minPts 
            #end if 
            if iEnd - i < minPts: 
                iEnd = i + minPts 
            #end if 
            if iStart < 0: iStart = 0 
            if iEnd > nPts: iEnd = nPts 
        #end if 
 
        xSeg = x[iStart:iEnd] 
        xSeg = np.array(xSeg) 
        ySeg = y[iStart:iEnd] 
        ySeg = np.array(ySeg) 
        # xx = [xSeg**0, xSeg, xSeg**2, xSeg**3, xSeg**4]  # 5 x 20 
        xx = [] 
        for iOrder in range(polyOrder): 
            xx.append(xSeg**iOrder) 
        #end iOrder 
        xx = np.array(xx) 
        xx = xx.T                                        # 20 x 5 
        # 
        #  x * c = y 
        #  x^T * x * c = x^T * y 
        #  [x^T * x]^-1 * [x^T * x] * c = [x^T * x]^-1 * x^T * y 
        #  c = [x^T * x]^-1 * x^T * y 
        #  c = [  x^T     * x]^-1  *      x^T    *     y 
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        #  c = [[5 x20] [20 x 5]]  *   [5 x 20]  * [20 x 1] 
        #  c =      [5 x 5]        *   [5 x 20]  * [20 x 1] 
        #  c =                  [5 x 20]         * [20 x 1] 
        #  c =                                [5 x 1] 
        # 
        # 
        xTemp = np.dot(xx.T, xx)         # 5 x 5 
        try: 
            xTemp = np.linalg.inv(xTemp)     # 5 x 5 
        except:  
            # display(xTemp) 
            break 
        xTemp = np.dot(xTemp, xx.T)      # 5 x 20 
        c = np.dot(xTemp, ySeg)          # 5 x 1 
        xCur = x[i] 
        yApprox = c[0] 
        for iOrder in range(1, polyOrder): 
            yApprox = yApprox + c[iOrder] * xCur ** iOrder 
        # end iOrder 
        yApproxs.append(yApprox) 
        if deriv == 1: 
            # y       = c[0]      +     c[1] * x**1 +      c[2] * x**2 +     c[3] * x**3 + c[4] * x**4 
            # dy/dt   = c[1]      + 2 * c[2] * x**1 +  3 * c[3] * x**2 + 4 * c[4] * x**3 
            # d2y/dt2 = 2 * c[2]  + 6 * c[3] * x**1 + 12 * c[4] * x**2 
            # yApprox = c[0] +   c[1]*xCur +   c[2]*xCur**2 +   c[3]*xCur**3 + c[4]*xCur**4 
            # yDot =    c[1] + 2*c[2]*xCur + 3*c[3]*xCur**2 + 4*c[4]*xCur**3 
            # y2Dot =   2 * c[2] + 2 * 3 * c[3] * xCur + 3 * 4 * c[4] * xCur**2 
 
            yDot = c[1] 
            for iOrder in range(2, polyOrder): 
                yDot = yDot + iOrder * c[iOrder] * xCur ** (iOrder-1) 
            #end iOrder 
            yDots.append(yDot) 
        elif deriv == 2: 
            if polyOrder == 2: 
                print('2nd derivative does not exist for y=C0x^0+C1*x^1') 
                return {}, [] 
            #end if 
            # y2Dot = 2*c[2] + 6*c[3]*xCur + 12*c[4]*xCur**2 
            y2Dot = 2*c[2] 
            for iOrder in range(3, polyOrder): 
                y2Dot = (iOrder-1) * iOrder * xCur ** (iOrder - 2) 
            #end iOrder 
            y2Dots.append(y2Dot) 
        # end if 
    # end i 
    # 
    # Store the Approximated curve 
    # 
 
    yApproxs = np.array(yApproxs) 
    xyData = list(zip(x, yApproxs)) 
    if deriv == 1: 
        yDots = np.array(yDots) 
        xyData = list(zip(x, yDots)) 
 
    elif deriv == 2: 
        y2Dots = np.array(y2Dots) 
        xyData = list(zip(x, y2Dots)) 
 
# end funcName 
 
    return xyData 
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Appendix II. Python Code: Generate Test Points and calculate Best-Fit damper curve coefficients to establish damping function.  

### Point Generation 
from scipy.signal import sosfiltfilt, butter 
import matplotlib.pyplot as plt 
import numpy as np 
 
def butter_filt(input_signal,sampleRate=2000,filt_freq=400,filt_order=2): 
    # sampleRate = 2000   # Hz imported data sample rate, could be calculated instead 
    # filt_freq = 400     # Hz for butterworth filter applied to data 
    # filt_order = 2      # Applied forward and backward so actually 2x this value 
    sos = butter(filt_order, filt_freq, fs = sampleRate, output='sos') 
    output_signal = sosfiltfilt(sos,input_signal) 
    return(output_signal) 
 
speeds_sorted={ 
    'Original': ['gas','0p1','0p5','001','005','010','025', 
                 '050','100','200','300','400','500'], 
    'Rerun'   : [str(i).zfill(3) for i in range(1,51)], 
    'All'     : ['gas','0p1','0p5']} 
speeds_sorted['All'].extend([str(i).zfill(3) for i in range(1,51)]) 
speeds_sorted['All'].extend(['100','200','300','400','500']) 
 
def make_damp_array(speeds_sorted,run_data,dataset): 
    working_df_dict = [f'Ramp_250_{i}' for i in speeds_sorted[dataset]] 
    damp_array = [] 
    damp_array_disp = [] 
    vel_list = [] 
    for fileindex in list(working_df_dict): 
 
        data = run_data[dataset][fileindex] 
        time_in = np.array(data['Time [s]']) 
        ang_in = np.array(data['Rotary Angle [deg]']) 
        ang_filt = butter_filt(ang_in)  
        torq_in = np.array(data['Rotary Torque [ft-lbf]']) * 12 
        target_vel = fileindex[-3:].replace('p','.').replace('gas','.05') 
         
        xyData = list(zip(time_in, ang_filt)) 
        xyData = tfuDiff(xyData, deriv = 1, smoothPts=20, polyOrder = 3,  
                         yTol=0.0, symmetryFlag=True, minPts=1) 
        dtime_in, der_vel = zip(*xyData) 
        der_vel_abs = [abs(i) for i in der_vel] 
        mean_vel = np.mean([i for i in der_vel_abs if i < 1.2*float(target_vel)  
                            and i > 0.8*float(target_vel)]) 
 
        damp_array.append([mean_vel,-1*min(torq_in),-1*max(torq_in)]) 
        damp_array_disp.append(['{:.3E}'.format(mean_vel), 
                                '{:.3E}'.format(min(-1*torq_in)), 
                                '{:.3E}'.format(max(-1*torq_in))]) 
 
        vel_list.append(target_vel) 
    damp_array = np.transpose(damp_array) 
    return damp_array 
 
damp_array = {} 
for dataset in list(run_data): 
    damp_array[dataset] = make_damp_array(speeds_sorted,run_data,dataset) 
del speeds_sorted,run_data,dataset 
 
#adjust points w/ -1<Vel<0 to match curve 
damp_array['All'][2][0:3] += damp_array['Rerun'][2][0]-damp_array['Original'][2][3] 
import scipy.optimize as spo 
 
def linear_approx(vel_lookup,tq_lookup):  
    class opt_curve: 
        def __init__(self,vel_lookup,tq_lookup): 
            self.vel_lookup = vel_lookup 
            self.tq_lookup = tq_lookup 
         
        #Function To minimize 
        def f(self, C): 
            error = np.zeros(len(self.vel_lookup)) 
            for (i,vel) in enumerate(self.vel_lookup): 
                # Error = Ax + B - y 
                error[i] = ((C[0]*vel + C[1] - self.tq_lookup[i])/self.tq_lookup[i])**2 
            error_sum = sum(error)*10000                                     #Error Scaling necessary 
            return error_sum 
 
    opt_curve1=opt_curve(vel_lookup,tq_lookup) 
 
    #First Guess 
    C_start = [1,np.sign(vel_lookup[0])] 
 
    #Constraints 
    cons = ({'type': 'ineq', 'fun': lambda C: C[0]}) #B must be non-negative 
 
    #Optimization 
    result = spo.minimize(opt_curve1.f,C_start,constraints=cons) 
 
    C_dampV = result.x 
    R2_dampV = result.fun 
    print('-'*100) 
    # print(result.message) 
    print('Optimized Linear for Damper Curve:') 
    print(f'\t y = ({round(C_dampV[0],4)})x + ({round(C_dampV[1],4)})') 
    print(f'\t R^2: {R2_dampV}') 
 
    return(C_dampV) 
 
def quadratic_approx(vel_lookup_neg,tq_lookup_neg,vel_lookup_pos,tq_lookup_pos):  
    class opt_curve: 
        def __init__(self,vel_lookup_pos,tq_lookup_pos,vel_lookup_neg,tq_lookup_neg): 
            self.vel_lookup_pos = vel_lookup_pos 
            self.tq_lookup_pos = tq_lookup_pos 
            self.vel_lookup_neg = vel_lookup_neg 
            self.tq_lookup_neg = tq_lookup_neg 
         
        #Function To minimize 
        def f(self, C): 
            error = 0 
            count = 0 
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            for (i,vel) in enumerate(self.vel_lookup_pos): 
                # Error = Ax^2 + Bx+ C - y 
                error += ((C[0]*pow(vel,2) + C[1]*vel + C[2] - self.tq_lookup_pos[i]))**2 
                count += 1 
            for (i,vel) in enumerate(self.vel_lookup_neg): 
                # Error = Ax^2 + Bx+ C - y 
                error += ((-C[0]*pow(vel,2) - C[1]*vel - C[2] - self.tq_lookup_neg[i]))**2 
                count += 1 
            error_sum = error/count                                     #Error Scaling necessary 
            return error_sum 
 
    opt_curve1=opt_curve(vel_lookup_pos,tq_lookup_pos,vel_lookup_neg,tq_lookup_neg) 
 
    #First Guess 
    C_start = [1,1,1] 
 
    #Constraints 
    # cons = ({'type': 'ineq', 'fun': lambda C: (-C[1])/(2*C[0])}) #-b/2A must be non-negative 
    cons = ({'type': 'ineq', 'fun': lambda C: C[0]}, 
            {'type': 'ineq', 'fun': lambda C: C[2]}) #A,C must be non-negative 
 
    #Optimization 
    result = spo.minimize(opt_curve1.f,C_start,constraints=cons) 
    # result = spo.minimize(opt_curve1.f,C_start) 
    C_dampVpos = [0,0,0] 
    C_dampVpos[0] = -1*result.x[0] 
    C_dampVpos[2] = -1*result.x[2] 
 
    R2_dampV = result.fun 
 
    print('-'*100) 
    print(result.message) 
    print('Optimized Quadratics for Damper Curve:') 
    print(f'\t y = ({round(C_dampVpos[0],4)})x^2 + ({round(C_dampVpos[1],4)})x + ({round(C_dampVpos[2],4)})') 
    print(f'\t R^2: {R2_dampV}') 
    return(C_dampVpos) 
 
def Quad_Lin_intercept(C_lin,C_quad): 
    class functions: 
        def __init__(self,C_lin,C_quad): 
            self.C_lin = C_lin 
            self.C_quad = C_quad 
        def f(self,z): 
            x,y = z 
            f_lin = self.C_lin[0]*x + self.C_lin[1] - y 
            f_quad = self.C_quad[0]*pow(x,2) + self.C_quad[1]*x + self.C_quad[2]-y 
            return(f_lin,f_quad) 
    functions1 = functions(C_lin,C_quad) 
 
    # #First Guess 
    guess = [25*np.sign(C_quad[0]),50000*np.sign(C_quad[0])] 
    # #Solve 
    intercept = spo.fsolve(functions1.f,guess,) 
    print('-'*100) 
    print(f'Linear/Quadradtic Intercept: {intercept}') 
    return intercept 
 
def Lin_Lin_intercept(C_lin,C_lin2): 
    class functions: 
        def __init__(self,C_lin,C_lin2): 
            self.C_lin = C_lin 
            self.C_lin2 = C_lin2 
        def f(self,z): 
            x,y = z 
            f_lin = self.C_lin[0]*x + self.C_lin[1] - y 
            f_lin2 = self.C_lin2[0]*x + self.C_lin2[1] - y 
            return(f_lin,f_lin2) 
    functions1 = functions(C_lin,C_lin2) 
 
    # #First Guess 
    guess = [C_lin[0],C_lin[1]] 
 
    # #Solve 
    intercept = spo.fsolve(functions1.f,guess) 
    print('-'*100) 
    print(f'Linear/Linear Intercept: {intercept}') 
    return intercept 
 
# Rebound = R, Jounce = J 
lookup_vel = { 
    'R-Valve':            [-1*i for i in damp_array['All'][0][17:55]],      #damp_array['All'] 
    # 'R-Leakage, Seal':    [-1*i for i in damp_array['All'][0][17:17]], 
    'R-Leakage, No Seal': [-1*i for i in damp_array['All'][0][:17]], 
    'J-Leakage, No Seal': damp_array['All'][0][:17], 
    'J-Leakage, Seal':    damp_array['All'][0][17:23], 
    'J-Valve':            damp_array['All'][0][23:55]} 
lookup_tq = { 
    'R-Valve':            damp_array['All'][2][17:55], 
    # 'R-Leakage, Seal':    damp_array['All'][2][17:17], 
    'R-Leakage, No Seal': damp_array['All'][2][:17], 
    'J-Leakage, No Seal': damp_array['All'][1][:17], 
    'J-Leakage, Seal':    damp_array['All'][1][17:23], 
    'J-Valve':            damp_array['All'][1][23:55]} 
 
lookup_coeff = { 
    'R-Valve':            linear_approx(lookup_vel['R-Valve'], 
                                        lookup_tq['R-Valve']), 
    # 'R-Leakage, Seal':    linear_approx(lookup_vel['R-Leakage, Seal'], 
    #                                     lookup_tq['R-Leakage, Seal']), 
    'R-Leakage, No Seal': quadratic_approx(lookup_vel['R-Leakage, No Seal'], 
                                           lookup_tq['R-Leakage, No Seal'], 
                                           lookup_vel['J-Leakage, No Seal'], 
                                           lookup_tq['J-Leakage, No Seal']), 
    'NegV Fix': [], 
    'PosV Fix': [], 
    'J-Leakage, No Seal': [], 
    'J-Leakage, Seal':    linear_approx(lookup_vel['J-Leakage, Seal'], 
                                        lookup_tq['J-Leakage, Seal']), 
    'J-Valve':            linear_approx(lookup_vel['J-Valve'], 
                                        lookup_tq['J-Valve'])} 
lookup_coeff['J-Leakage, No Seal'] = [-1*i for i in lookup_coeff['R-Leakage, No Seal']] 
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fixpoint = 0.005 
lookup_intercept = { 
    'R-Valve_R-Leakage, No Seal':           Quad_Lin_intercept(lookup_coeff['R-Valve'],lookup_coeff['R-Leakage, No Seal']), 
    'R-Leakage, No Seal_NegV Fix':[-fixpoint,lookup_coeff['R-Leakage, No Seal'][0]*pow(-fixpoint,2) + lookup_coeff['R-Leakage, No Seal'][1]*(-fixpoint) + lookup_coeff['R-Leakage, No Seal'][2]], 
    'PosV Fix_J-Leakage, No Seal':[fixpoint,lookup_coeff['J-Leakage, No Seal'][0]*pow(fixpoint,2) + lookup_coeff['J-Leakage, No Seal'][1]*(fixpoint) + lookup_coeff['J-Leakage, No Seal'][2]], 
    'J-Leakage, No Seal_J-Leakage, Seal':   Quad_Lin_intercept(lookup_coeff['J-Leakage, Seal'],lookup_coeff['J-Leakage, No Seal']), 
    'J-Leakage, Seal_J-Valve':              Lin_Lin_intercept(lookup_coeff['J-Leakage, Seal'],lookup_coeff['J-Valve'])} 
del fixpoint 
lookup_coeff['NegV Fix'] = lookup_intercept['R-Leakage, No Seal_NegV Fix'][1]/lookup_intercept['R-Leakage, No Seal_NegV Fix'][0] 
lookup_coeff['PosV Fix'] = lookup_intercept['PosV Fix_J-Leakage, No Seal'][1]/lookup_intercept['PosV Fix_J-Leakage, No Seal'][0] 
 
# print(lookup_coeff['NegV Fix']) 
# print(lookup_coeff['PosV Fix']) 
 
# declare damping function "dampF" 
def dampF(vel_in): 
    f_out = np.piecewise(vel_in,  
                            [(vel_in<=lookup_intercept['R-Valve_R-Leakage, No Seal'][0]),  
                            ((lookup_intercept['R-Valve_R-Leakage, No Seal'][0] < vel_in)&(vel_in < lookup_intercept['R-Leakage, No Seal_NegV Fix'][0])), 
                            (lookup_intercept['R-Leakage, No Seal_NegV Fix'][0]<=vel_in) & (vel_in<=0), 
                            (0<vel_in) & (vel_in<=lookup_intercept['PosV Fix_J-Leakage, No Seal'][0]), 
                            ((lookup_intercept['PosV Fix_J-Leakage, No Seal'][0] < vel_in) & (vel_in < lookup_intercept['J-Leakage, No Seal_J-Leakage, Seal'][0])), 
                            ((lookup_intercept['J-Leakage, No Seal_J-Leakage, Seal'][0] < vel_in) & (vel_in < lookup_intercept['J-Leakage, Seal_J-Valve'][0])), 
                            (lookup_intercept['J-Leakage, Seal_J-Valve'][0] <= vel_in)], 
 
                            [lambda vel: lookup_coeff['R-Valve'][0]*vel + lookup_coeff['R-Valve'][1], 
                             lambda vel: lookup_coeff['R-Leakage, No Seal'][0]*pow(vel,2) + lookup_coeff['R-Leakage, No Seal'][1]*vel + lookup_coeff['R-Leakage, No Seal'][2], 
                             lambda vel: lookup_coeff['NegV Fix']*vel, 
                             lambda vel: lookup_coeff['PosV Fix']*vel, 
                             lambda vel: lookup_coeff['J-Leakage, No Seal'][0]*pow(vel,2) + lookup_coeff['J-Leakage, No Seal'][1]*vel + lookup_coeff['J-Leakage, No Seal'][2], 
                             lambda vel: lookup_coeff['J-Leakage, Seal'][0]*vel + lookup_coeff['J-Leakage, Seal'][1], 
                             lambda vel: lookup_coeff['J-Valve'][0]*vel + lookup_coeff['J-Valve'][1]]) 
    return(f_out) 
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Appendix III. Python Code: Physics Motivated Model and Optimization Function 
def reacF_physics(vel_in, 
    A = 257,                
    B = 3999,       
    C = 14, 
    D = 16391,       
    J = 208318,      
    F = 448,         
    K = -67386,      
    H = 346          
    ): 
    from math import sqrt 
    leakage = { 
        'Quad' : A, #Quadratic Coefficient, A 
        'Fric' : B, #Friction Coefficient, B 
        'Thrsh' : C, #Higher Leakage resistance threshould, C 
        'Slope' : D #Higher Leakage resistance slope, D 
    } 
    valve = { 
        'C Tq' : J, #Cracking Tq, J 
        'C Vel Rt' : [], #Cracking Vel Rate, E 
        'C Fl Cr': F, #Flow Characteristic, F 
        'E Tq' : K, #Cracking Tq, K 
        'E Vel Rt' : [], #Cracking vel rate, G 
        'E Fl Cr': H, #Flow Characteristic, H 
        'Area': 13.84, #Loaded Area 
        'C of P': 4.24 #Center of Pressure (radius) 
    } 
 
    valve['C Vel Rt'] = (-leakage['Slope'] + sqrt(leakage['Slope']**2-4* 
        leakage['Quad']*(leakage['Fric']-valve['C Tq']-leakage['Slope']* 
        leakage['Thrsh'])))/(2*leakage['Quad']) 
    valve['E Vel Rt'] = (-1*sqrt(-1*(valve['E Tq']+leakage['Fric'])/(leakage['Quad']))) 
    valve['C Pressure'] = valve['C Tq']/valve['C of P']/valve['Area'] 
    valve['E Pressure'] = valve['E Tq']/valve['C of P']/valve['Area'] 
    curve = [] 
    vol_leakage = [] 
    reacF = [] 
    valve_flow = [] 
 
    for [i,vel] in enumerate(vel_in): 
        if vel < valve['E Vel Rt']: 
            curve.append('hi_ext') 
        elif vel < leakage['Thrsh']: 
            curve.append('lo_sp') 
        elif vel < valve['C Vel Rt']: 
            curve.append('med_comp') 
        else: 
            curve.append('hi_comp') 
         
        if curve[i]=='lo_sp' or curve[i]=='med_comp': 
            vol_leakage.append(vel) 
        elif curve[i]=='hi_comp': 
            vol_leakage.append((-(leakage['Slope']+valve['C Fl Cr'])+sqrt((( 
                leakage['Slope']+valve['C Fl Cr'])**2)-4*leakage['Quad']*( 
                leakage['Fric']-valve['C Tq']-leakage['Slope']*leakage['Thrsh']- 
                valve['C Fl Cr']*vel)))/(2*leakage['Quad'])) 
        elif curve[i]=='hi_ext': 
            # (H_-SQRT(H_^2-4*A_*(B_+K_+H_*V4)))/(2*A_) 
            vol_leakage.append((valve['E Fl Cr']-sqrt((valve['E Fl Cr']**2)-4* 
                leakage['Quad']*(leakage['Fric']+valve['E Tq']+valve['E Fl Cr']* 
                vel)))/(2*leakage['Quad'])) 
        valve_flow.append(vel-vol_leakage[i]) 
        reacF.append(leakage['Quad']*np.sign(vol_leakage[i])*(vol_leakage[i]**2) +  
                    leakage['Fric']*np.sign(vol_leakage[i]) + leakage['Slope']* 
                    max(vol_leakage[i]-leakage['Thrsh'],0)) 
    func_outputs = { 
        'Vol Leakage': vol_leakage, 
        'Vol Valve': valve_flow, 
        'Tq Reac': reacF, 
        'Curve': curve 
    }  
    return func_outputs 
def P_model_opt(vel_lookup,tq_lookup): 
    class opt_func: 
        def __init__(self,vel_lookup,tq_lookup): 
            self.vel_lookup = vel_lookup 
            self.tq_lookup = tq_lookup 
         
        def f(self,params): 
            error = 0 
            count = 0 
            for (i,vel) in enumerate(self.vel_lookup): 
                error += abs(reacF_physics([vel], 
                    A=params[0], 
                    B=params[1], 
                    # C=params[2], 
                    D=params[3], 
                    J=params[4], 
                    F=params[5], 
                    K=params[6], 
                    H=params[7], 
                    )['Tq Reac']-self.tq_lookup[i]) 
                count += 1 
            error_sum = error/count 
            return error_sum 
    opt_func1 = opt_func(vel_lookup,tq_lookup) 
 
    param_start =[255,3800,14,16000,205000,400,-66000,400] 
    # param_start =[255,3800,14,16000] 
 
    cons = { 
            'type':'ineq','fun': lambda params: params[3]**2-4*params[0]*( 
                params[1]-params[4]-params[3]*params[2]), 
            'type':'ineq','fun':lambda params:-1*(params[4]+params[1])/(params[0]), 
            'type':'ineq','fun':lambda params: params[0], 
            'type':'ineq','fun':lambda params: params[1], 
            'type':'ineq','fun':lambda params: params[2], 
            'type':'ineq','fun':lambda params: params[3], 
            'type':'ineq','fun':lambda params: params[4], 
            'type':'ineq','fun':lambda params: params[5], 
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            'type':'ineq','fun':lambda params: -1*params[6], 
            'type':'ineq','fun':lambda params: params[7], 
            } 
    result = spo.minimize(opt_func1.f,param_start,constraints=cons) 
    display(f'A = {result.x[0]}') 
    display(f'B = {result.x[1]}') 
    display(f'C = {result.x[2]}') 
    display(f'D = {result.x[3]}') 
    display(f'E = {result.x[4]}') 
    display(f'F = {result.x[5]}') 
    display(f'G = {result.x[6]}') 
    display(f'H = {result.x[7]}') 
    display(result.message) 
    display(f'R^2: {result.fun}') 
 
vel_lookup = [-i for i in damp_array['All'][0][:-3]] 
vel_lookup.extend([i for i in damp_array['All'][0][:-3]]) 
tq_lookup = [i for i in damp_array['All'][2][:-3]] 
tq_lookup.extend([i for i in damp_array['All'][1][:-3]]) 
P_model_opt(vel_lookup,tq_lookup) 
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Appendix IV. Python Code: Damper Updated Compliant Model 
def get_reacF_from_ang(time,ang,inv_vel=False,inv_tq=False): 
    """This function imports necessary libraries, as well as runs the ODE to find the calculated torque. 
    You may need to invert `reactionF` depending on the orientation of  
    the sensor.""" 
    import numpy  as np 
    from re import X 
    from scipy.integrate import odeint 
    from scipy.interpolate import interp1d 
    class calc_dampf: 
        def __init__(self,time_filt,ang_filt,inv_vel,inv_tq): 
            self.x_lashLim = 0.5 
            self.k_oil = 47e3 
            self.k_lash = 500 
 
            self.time_filt = time_filt 
            self.ang_filt = ang_filt 
 
            self.lookup_coeff = { 
                'R-Valve': [275.782,-63748.0], 
                'R-Leakage, No Seal':[-255.259,0,-3837.05], 
                'NegV Fix': [767412], 
                'PosV Fix': [767412], 
                'J-Leakage, No Seal': [255.259,0,3837.05], 
                'J-Leakage, Seal': [24529.1,-287731], 
                'J-Valve': [395.477,200814] 
            } 
            self.lookup_intercept = { 
                'R-Valve_R-Leakage, No Seal': [-15.8699,-68124.6], 
                'R-Leakage, No Seal_NegV Fix':[-0.005,-3837.06], 
                'PosV Fix_J-Leakage, No Seal':[0.005,3837.06], 
                'J-Leakage, No Seal_J-Leakage, Seal':[13.8961,53127.9], 
                'J-Leakage, Seal_J-Valve':[20.2433,208820] 
            } 
 
            if inv_vel: self.inv_vel = 1 
            else: self.inv_vel = -1 
 
            if inv_tq: self.inv_tq = -1 
            else: self.inv_tq = 1 
 
        def vel_k_damper(self,x_oil, time_val): 
            """     
            INPUTS k12, k01, x2, x0, time_val 
            CALCULATED x1, x.2 
            RETURN x.2 
 
            Node x1 is point between finite travel spring and external angle x0 
                It is connected to external angle by a low spring rate finite travel 
                k12 * (x2 - x1) = k01 * (x1 - x0)   (Force blance at node x1) 
                We know x0, x2 comes from ODE find x1 directly 
                x1_canidate = (k12 * x2 + k01* x0) / (k01+k12) 
                Clamp x1 by limiting diff from x0 
             
            Solve ODE with spring BTW x2 and x1  
                x2 is point between damper and 50k spring 
                x.2 = dampV[k12 * (x2 - x1)]  (Force blance between spring and damper) 
            """ 
            x_ext = self.ang_filt[np.searchsorted(self.time_filt, time_val)-1]        # Get cmd angle 
            x_rot_candidate = (self.k_oil * x_oil + self.k_lash* x_ext) / (self.k_lash+self.k_oil) 
            xdiff = x_rot_candidate - x_ext 
            if -self.x_lashLim < xdiff < self.x_lashLim: 
                x_rot = x_rot_candidate 
            elif self.x_lashLim < xdiff:  
                x_rot = x_ext + self.x_lashLim 
            else:  
                x_rot = x_ext - self.x_lashLim 
            force = self.k_oil*(x_oil-x_rot) 
            vel_new = self.inv_vel*self.dampV(force*self.inv_tq) 
            return (vel_new) 
        def calc_res(self): 
            x_ext = self.ang_filt 
            res = odeint(self.vel_k_damper, x_ext[0], self.time_filt) 
            x_oil = res[:,0]  
            x_rot_candidate = (self.k_oil * x_oil + self.k_lash* x_ext) / (self.k_lash+self.k_oil) 
            force = 0*x_oil 
            x_rot = 0*x_rot_candidate 
            for (i,x1_val) in enumerate(x_rot_candidate): 
                xdiff = x_rot_candidate[i] - x_ext[i] 
                if -self.x_lashLim <= xdiff <= self.x_lashLim: 
                    x_rot[i] = x_rot_candidate[i] 
                elif self.x_lashLim < xdiff:  
                    x_rot[i] = x_ext[i] + self.x_lashLim 
                elif self.x_lashLim > xdiff:  
                    x_rot[i] = x_ext[i] - self.x_lashLim 
                     
                force[i] = self.k_oil*(x_oil[i]-x_rot[i]) 
            x_rot_vel = self.inv_vel*self.dampV(force*self.inv_tq)  
            fric_force = self.dampF(x_rot_vel*self.inv_vel)*self.inv_tq - self.k_oil*(x_oil-x_rot) 
            reactionF = self.dampF(x_rot_vel*self.inv_vel)*self.inv_tq - fric_force 
            return (reactionF, x_rot_vel, x_ext, x_rot, x_oil) 
        def dampF(self, vel_in): 
            f_out = np.piecewise(vel_in,  
                [(vel_in<=self.lookup_intercept['R-Valve_R-Leakage, No Seal'][0]),  
                ((self.lookup_intercept['R-Valve_R-Leakage, No Seal'][0] < vel_in)&(vel_in < self.lookup_intercept['R-Leakage, No Seal_NegV Fix'][0])), 
                (self.lookup_intercept['R-Leakage, No Seal_NegV Fix'][0]<=vel_in) & (vel_in<=0), 
                (0<vel_in) & (vel_in<=self.lookup_intercept['PosV Fix_J-Leakage, No Seal'][0]), 
                ((self.lookup_intercept['PosV Fix_J-Leakage, No Seal'][0] < vel_in) & (vel_in < self.lookup_intercept['J-Leakage, No Seal_J-Leakage, Seal'][0])), 
                ((self.lookup_intercept['J-Leakage, No Seal_J-Leakage, Seal'][0] < vel_in) & (vel_in < self.lookup_intercept['J-Leakage, Seal_J-Valve'][0])), 
                (self.lookup_intercept['J-Leakage, Seal_J-Valve'][0] <= vel_in)], 
 
                [lambda vel: self.lookup_coeff['R-Valve'][0]*vel + self.lookup_coeff['R-Valve'][1], 
                 lambda vel: self.lookup_coeff['R-Leakage, No Seal'][0]*pow(vel,2) + self.lookup_coeff['R-Leakage, No Seal'][1]*vel + self.lookup_coeff['R-Leakage, No Seal'][2], 
                 lambda vel: self.lookup_coeff['NegV Fix']*vel, 
                 lambda vel: self.lookup_coeff['PosV Fix']*vel, 
                 lambda vel: self.lookup_coeff['J-Leakage, No Seal'][0]*pow(vel,2) + self.lookup_coeff['J-Leakage, No Seal'][1]*vel + self.lookup_coeff['J-Leakage, No Seal'][2], 
                 lambda vel: self.lookup_coeff['J-Leakage, Seal'][0]*vel + self.lookup_coeff['J-Leakage, Seal'][1], 
                 lambda vel: self.lookup_coeff['J-Valve'][0]*vel + self.lookup_coeff['J-Valve'][1]]) 
            return(f_out) 
        def dampV(self, f_in): 
            vel_out = np.piecewise(f_in,  
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                [(f_in<=self.lookup_intercept['R-Valve_R-Leakage, No Seal'][1]),  
                 ((self.lookup_intercept['R-Valve_R-Leakage, No Seal'][1] < f_in)&(f_in < self.lookup_intercept['R-Leakage, No Seal_NegV Fix'][1])), 
                 (self.lookup_intercept['R-Leakage, No Seal_NegV Fix'][1]<=f_in) & (f_in<=0), 
                 (0<f_in) & (f_in<=self.lookup_intercept['PosV Fix_J-Leakage, No Seal'][1]), 
                 ((self.lookup_intercept['PosV Fix_J-Leakage, No Seal'][1] < f_in) & (f_in < self.lookup_intercept['J-Leakage, No Seal_J-Leakage, Seal'][1])), 
                 ((self.lookup_intercept['J-Leakage, No Seal_J-Leakage, Seal'][1] < f_in) & (f_in < self.lookup_intercept['J-Leakage, Seal_J-Valve'][1])), 
                 (self.lookup_intercept['J-Leakage, Seal_J-Valve'][1] <= f_in)], 
                [lambda torq: (torq - self.lookup_coeff['R-Valve'][1])/self.lookup_coeff['R-Valve'][0], 
                lambda torq: (pow(4*self.lookup_coeff['R-Leakage, No Seal'][0]*torq-4*self.lookup_coeff['R-Leakage, No Seal'][0]*self.lookup_coeff['R-Leakage, No Seal'][2]+pow(self.lookup_coeff['R-Leakage, No 
Seal'][1],2),1/2)+self.lookup_coeff['R-Leakage, No Seal'][1])/(2*self.lookup_coeff['R-Leakage, No Seal'][0]), 
                lambda torq: torq/self.lookup_coeff['NegV Fix'], 
                lambda torq: torq/self.lookup_coeff['PosV Fix'], 
                lambda torq: (pow(4*self.lookup_coeff['J-Leakage, No Seal'][0]*torq-4*self.lookup_coeff['J-Leakage, No Seal'][0]*self.lookup_coeff['J-Leakage, No Seal'][2]+pow(self.lookup_coeff['J-Leakage, No 
Seal'][1],2),1/2)+self.lookup_coeff['J-Leakage, No Seal'][1])/(2*self.lookup_coeff['J-Leakage, No Seal'][0]), 
                lambda torq: (torq - self.lookup_coeff['J-Leakage, Seal'][1])/self.lookup_coeff['J-Leakage, Seal'][0],             
                lambda torq: (torq - self.lookup_coeff['J-Valve'][1])/self.lookup_coeff['J-Valve'][0]])             
            return(vel_out) 
    get_results = calc_dampf(time,ang,inv_vel,inv_tq)  
    return (get_results.calc_res()) 

  



Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al. 
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293 

Page 25 of 42 

Appendix V. Test Dashboard: Ramp Input with Temperature Variation 

 
 



Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al. 
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293 

Page 26 of 42 

 



Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al. 
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293 

Page 27 of 42 

 
  



Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al. 
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293 

Page 28 of 42 

Appendix VI. Test Dashboard: Sinusoidal Input with Temperature Variation 
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Appendix VII. Test Dashboard: Half Round Input with Temperature Variation 
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Appendix VIII. Test Dashboard: Ramp Input with Model Variation 
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Appendix IX. Test Dashboard: Sinusoidal Input with Model Variation 
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Appendix X. Test Dashboard: Half Round Input with Model Variation 
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Appendix XI. Test Dashboard: Half Round Input with Model Variation Cross-Plots 
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