
Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al.
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293

2023 NDIA MICHIGAN CHAPTER
GROUND VEHICLE SYSTEMS ENGINEERING

AND TECHNOLOGY SYMPOSIUM
"DATA ANALYSIS AND MODELING" OR "TESTING AND VALIDATION” TECHNICAL SESSION

AUGUST 15-17, 2023 - NOVI, MICHIGAN

Transient Torque Response of Tracked Vehicle Suspension Rotary Dampers

David Ostberg1, Kenneth Redner2, Samuel Allen1

1U.S. Army Ground Vehicle Systems Center, Warren, MI

2Booz Allen Hamilton, Troy, MI

ABSTRACT
Damper models used in Multi Body Dynamics simulations of tracked

vehicles are commonly defined solely by damper curves, that is stabilized damper
reaction torque as a function of steady state velocity. In reality, the achievement of
the stable reaction torque lags behind damper curve torque upon attainment of a
given velocity. As detailed in this paper, the idealization to reduce damper
performance to a “damper curve” cannot produce an accurate representation of
the two primary terrains military vehicles are designed against: half-round and
ride quality courses. By introducing “compliance” and “lash”, the damper
performance can be accurately represented. With the slight extension of this model
to a fully physics based one, future dampers can be designed to expand the
operating performance envelope of tracked vehicles.

Citation: D. Ostberg, K. Redner, S. Allen, “Transient Torque Response Modeling of Tracked Vehicle Suspension
Rotary Dampers,” In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium
(GVSETS), NDIA, Novi, MI, Aug. 16-18, 2022.

1. INTRODUCTION

U.S. Army Ground Vehicle Systems Center
(GVSC) conducted vehicle experiments in
2022 at Yuma Proving Ground (YPG) and it
was found that load correlation between
instrumented arms of tracked vehicles and
the simple models of springs and dampers
that are traditionally used in multi body
dynamics (MBD) simulations have
incredibly poor correlation for damped
stations yet excellent for undamped stations.
This difference is due to the traditionally used
models being poor predictors of actual
reaction torques of dampers.

These same models are also used during the
design phase of vehicle development where
damper response is tuned to maximize

percieved ride quality over terrains, and limit
accelerations over discrete events like half-
rounds. After vehicles are produced they are
then evaluated against these two conditions
per TOP-1-1-014 [1].

It is expected that dampers are improperly
tuned because of this gap between actual and
modeled damper performance. This
ultimately limits vehicle mobility by making
the ride unnecessarily uncomfortable.

With these motivations GVSC proceeded to
conduct bench testing to identify the root
cause of the deficiency in the damper
modeling practice and develop a damper
model that accurately represents damper
performance with the minimum possible
complexity.

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al.
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293

Page 2 of 42

2. BACKGROUND
GVSC began this investigation using a

tester specifically developed for tracked
vehicle suspensions.
2.1. GVSC Damper Test System

As discussed in a GVSETS paper from
2021 [2], a test system was developed to test
complete trailing arm assemblies and has
proven valuable to excite failure modes of
road arm durability and bearing wear.

Figure 1. Test System from GVSETS 2021 Paper

This tester was modified to conduct damper
evaluation by replacing the full trailing arm
assembly with one cut short but retaining all
upper spindle (trunnion) interfaces. With this
update, the rotary actuator now directly
drives the damper in the actual suspension
housing.

Additionally, a closed loop heated oil
system was installed to control housing
temperature by providing approximately 24
Gallons Per Minute (GPM) oil flow from a
reservoir with PID controlled heaters capable
of maintaining temperatures ranging from
unheated (~70F) to 350F. In Figure 2, arrows
indicate the oil inlet (blue), oil outlet
(orange), and two housing oil monitoring
thermocouples (red).

Figure 2. Damper Test System.

Because of the excellent performance

envelope of this test setup, the damper
reaction torques from actual time/angle series
data from the field, over durability and half
round courses, as well as traditional damper
sinusoids and ramps could be found.
2.2. Damper Model Summaries

As previously stated, the baseline
traditional model provided a poor prediction
of reaction torques. This model consists of a
four-part piecewise linear damper curve: high
speed compression (jounce), low speed
compression, low speed extension (rebound),
and high-speed extension.

In Section 4 an updated model which
improves upon the traditional one by
replacing the low speed linear regions with
quadratic dominated ones is introduced. In
extension the model is quadratic. In
compression it is quadratic up until a critical
velocity, and beyond this velocity it is linear.
Additionally, a term for friction is
introduced.

In Section 5 an updated compliant model is
introduced, which addresses the two critical
phenomena missing from the traditional and
updated damper curve models: lash and
compliance.

"Lash” refers to a finite travel low stiffness
region that is observed at low values of torque
when the system changes direction.

“Compliance” refers to the non-
instantaneous building and decaying of
reaction torque as damper velocity changes.

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al.
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293

Page 3 of 42

Figure 3 shows a hysteresis plot of angle and
damper reaction torque as the damper is
cycled through ramp functions. The
characteristic “lash” and “compliance” are
evident.

Figure 3. Typical Torque Response Hysteresis Plot

2.3. Damper Model Performance

In this section a series of cross plots of angle
and damper reaction torque are shown.
Within each figure the laboratory test data is
blue and model predictions are orange. The
first figure is the traditional model, which is
followed by the updated model, and then the
updated compliant model.

Figure 4 shows that all three models provide
a good estimation of the steady state
(constant velocity) torque response for a
ramp function at high speeds, however only
the updated compliant model captures the
lash and compliance characteristic.

Figure 4. Model Comparison with High Velocity (25
deg/sec) Ramp Input

Figure 5 shows for ramp functions at low

velocities (1 deg/sec). The lash and
compliance characteristics are nearly
negligible, hence the strong similarity of the
updated and updated compliant models to the
test result. However, the traditional model
deviates significantly from the test data.

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al.
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293

Page 4 of 42

Figure 5. Model comparison with Low Velocity (1
deg/sec) Ramp Input

The angle versus time profile over a

practical half-round event shown in Figure 6.

The half-round event provides the most
dramatic comparison of these three models.

Figure 6. Time-Angle Test Condition, 8" Half Round Test

The model torques over this event are

compared to the actual component reaction
torque in Figure 7.

Figure 7. Model Comparison Histograms with Half round

Test Input

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al.
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293

Page 5 of 42

The difference between model prediction

and recorded reaction torque is shown in the
cross-plots of Figure 8. Included in these
Figures are the reference line of zero error,
when model prediction and recorded reaction
torque exactly match, in black and +/- 50,000
in*lbf in red.
Figure 8. Model Comparison Cross-Plots with Half Round
Test Input

The half round example is a practical test

which is critical to accurately predict when
designing vehicles. The traditional model
and updated model are incredibly poor
predictors as shown, with errors exceeding
+/- 250,000 in-lbf.

The updated compliant model provides a
very good prediction but has a slight over
prediction of reaction torque magnitudes.
This slight over prediction is expected based
on the method used to generate the damper
curve as clarified in Section 3. Further model
tuning could be conducted and would lead to
an improved prediction.

3. DAMPER CURVE GENERATION

Damper reaction torque data for generating
the updated damper curve was collected on
the test bench by running triangle (ramp)
wave forms of amplitude 10 degrees at
various angular rates.

One single damper was used for the
characterization described in this section was
well as generation of all datasets discussed in
the entirety of this paper.
3.1. Initial Testing

The speeds specified in Table 1 were ran
starting from three stabilized thermal states:
ambient (~70F), 250°F and 350°F.

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al.
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293

Page 6 of 42

Table 1. Bench Test Input Parameters
Ramp Rate

[deg/s]
±0.05
±0.1
±0.5
±1
±5
±10
±25
±50
±100
±200

Raw position and torque channels collected
from instrumentation were processed before
use by forward and backward filtering using
a low pass Butterworth filter.

Table 2. Butterworth Filter Parameters
Sample Rate 2000 Hz

Filter Frequency 400 Hz
Filter Order 4

3.2. Smoothing of Velocity
To calculate the reaction force from a

damper curve, the angular velocity of the
rotor must be known and derived from the
raw time angle signals. Because the raw time
angle signals from both laboratory and
vehicle testing are noisy, they produce non-
physical velocities. The method to establish
angular velocity from time-angle signals in
this paper is to gather subsets of data ranging
from 10ms in the past to 10ms in future
corresponding to each time step. Then a
quadratic polynomial is fit to this vector of
angle data and the analytical value of velocity
at this time step is calculated from
polynomial coefficients. The specific
implementation of this algorithm in Python is
given in Appendix 1.
3.3. Testing Limitations

Test stand limitations began to reduce the
achieved angular amplitudes for 50 deg/sec
and higher but the angular velocities during
the constant velocity portions of the ramps
still fell within ±10% of the intended rate.

Since these datasets achieved steady state
reaction torques, the achieved minimum and
maximum torque at each intended velocity
were used to establish the damper curve.
These values for the three thermal conditions

are given in Table 3 and are shown
graphically in Figure 9.

Table 3. Temperature Variation with Ramp Input

Figure 9. Damper Curve Generated in Initial Bench
Testing

Comparing the results at the three different

temperatures, velocity amplitudes 25 deg/sec
and higher have very consistent reaction
torques, differing at most by 5 %.

At intermediate velocities, ±5 and ±10 deg
/sec, no clear trend exists, and massive
differences are observed.

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al.
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293

Page 7 of 42

For very small velocities, 1 deg/sec and
less, there is a general trend of higher
resistance as temperatures grow but the trend
is relatively weak.

Figure 10 shows an example of the 0.1
deg/sec condition where ambient and 250°F
are similar but 350°F has substantially more
resistance, in compression only.

Figure 10. Temperature Variation at Low Velocities

As will later be established, the large
velocities correspond to when the pressure
relief valves of the damper are active,
consistent temperature independent
performance is observed. However, the
performance at lower velocity amplitudes
does not have an obvious temperature
dependence.

Temperature as not investigated any further
in this study as a factor. Only the data for
initial temperature of 250°F was used for
development of the damper curve.
3.4. Refinement of Initial Testing

The initial data set provided poor
refinement in the low velocity (±25 deg/s)
region. Utilizing the same rotary damper and
test setup as before, additional testing was
conducted to fill in the gaps between existing
points.

Table 4. Bench Re-Test Input Parameters
Input

Function
Target

Velocity
[deg/s]

Temperature
[°F]

Ramp Range of [1,50] in
1 deg/s increments

250

This second set of testing for ±1 and ±5
deg/sec was within 22% of the first.

As apparent in Figure 11, significant
differences were observed for the ±10
deg/sec speeds. These speeds in the first set
of testing had massive jumps in reaction
torques as temperatures varied.

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al.
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293

Page 8 of 42

Figure 11. Test and Retest Point Comparison

4. DAMPER CONFIGURATION AND
MODELING MOTIVATION
4.1. Damper Construction

The general construction of dampers used in
tracked vehicles are rotors with two lobes
within a stator which creates two sets of oil
cavities. This geometry is reflected in the
functional diagram from [3] where two oil
cavities “A” and “B” are shown as well as the
additional features of orifice restrictors, tip
seals, and pressure relief valves (PRVs).

Figure 12. Damper Cross-Section

Note this diagram is a great simplification

of the assembly but does contain all

necessary elements for this discussion. Some
non-essential additional components are
seals in the axial direction, bearings to
maintain the rotor position relative to the
stator, and external oil makeup channels.

In typical damper implementations there is
negligible flow past any of the seals within
the damper to maintain consistent
performance and have good seal durability.
Thus, the only flow paths possible between
cavities A and B are normally through the
PRVs and orifices.

Figure 13. Oil Flow-paths within Damper

There are typically two sets of PRVs, a set

for the extension direction and a differently
configured set for the compression direction.
These valves permit no flow until a threshold
pressure is achieved. Once flow commences
the restriction is typically linear with flow
rate.

At low velocities the PRVs do not permit
any flow, thus oil can only flow through the
orifices. It has been shown that this flow
restriction depends on the particular
geometric details of the of the orifices. As
with other internal flow problems the
restriction would be expected to fall between
a linear response due to internal laminar flow
(viscous dominated) and due expansion and
contraction losses or higher flow rates be
quadratic. Some orifices like sharp edged
ones the linear region may be imperceivable.

 The design of the rotary damper tested in
this paper is somewhat anomalous because
there are no orifices to control low velocity
damping. Instead, low velocity damping is
“controlled” by leakage past the seals until
sufficient pressure builds to trigger PRV
flow.

It would be expected that initially the flow
restriction past the seals should be quadratic
like a sharp-edged orifice, and this response

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al.
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293

Page 9 of 42

for low velocities was observed. At higher oil
flow rates in the compression direction a
characteristic change was observed which
may be due to improved engagement of the
seal. In the compression direction two
distinct regions were observed: initially a
quadratic response, then a high slope linear
response.

Finally, the bearings and seals of the system
would be expected to have a friction like
behavior.

In summary, the friction and flow paths
restrictions should be sufficient to capture the
steady state response.

For transient performance two additional
considerations are needed. First since the
rotary damper is driven via a set of splines,
some lash behavior is expected. Also, the oil
and structure of the damper are not rigid,
some compliance is expected.
4.2. Steady state versus transient model

In steady state conditions, flow directly
relates to angular velocity, however in
transient conditions this is generally not the
case.

Before deriving the updated damper model
two necessary internal variables are
introduced to separate the lash, compliance,
and damper curve elements.
The variable XExt is the external “real world”

angular position of the rotor. XRot is
introduced to enable the deviation of the
external angle from the actual rotor angle due
to lash in the system. Lastly XOil enables
incorporation of compliance.

Figure 14. Damper Compliance Model

At the limit of infinitely stiff klash and koil

this model degenerates to the traditional
approach where XExt = XOil.
4.3. Steady state model

This section deals specifically with creating
the steady state model tuned to the data of
Section 3 (Damper Curve Generation) which

returns a reaction torque for a given angular
velocity.

In this model the units are torque (in-lbf),
angle (deg), and angular velocity (deg/sec).
Upon introduction of effective radii, this
model can be alternatively expressed as
pressure, volume, and volumetric flow rates.
These then have physical meanings that later
could be used by engineers to explore damper
designs. The primary characteristics that
would be varied during design work are PRV
cracking pressures and flow restrictions for
high speeds as well as orifice coefficient and
exponent for low speeds.

In the next section the terms pressure and
flow are used interchangeably with torque
and angular velocity in order to make the
derivation easier to follow.
4.4. Steady state model flow regimes

This section details the mathematical
method to replicate the damper curve
response described in the previous section.

Following from Figure 13 there are two
flow paths, one through the PRVs (𝑣𝑣𝑃𝑃𝑃𝑃𝑃𝑃) and
one through the orifice �𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜�. The total flow
(𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡) from cavity “A” to cavity “B” is the
sum of these two parallel paths.

𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑣𝑣𝑃𝑃𝑃𝑃𝑃𝑃 [deg/sec] (1)

The reaction torque of the damper occurs
due to a difference in pressures between the
two cavities acting over a loaded area of the
two rotors. This delta pressure is identical for
the two flow paths and its related measure,
reaction torque (𝜏𝜏):

𝜏𝜏 = 𝜏𝜏𝑜𝑜𝑟𝑟𝑖𝑖𝑖𝑖 = 𝜏𝜏𝑃𝑃𝑃𝑃𝑃𝑃 [in-lbf] (2)

The friction behavior of the damper in this
model is lumped into the orifice path
restriction based on the observed response.
Thus, the restriction of flow through the
orifice path includes three terms: an always
active quadratic restriction with coefficient
A, friction that opposes motion with
coefficient B, and for flows which exceed the

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al.
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293

Page 10 of 42

critical level C an additional linear restriction
D.

𝜏𝜏 = 𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠�𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜� ∗ 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜2 (3)
+𝐵𝐵 𝑠𝑠𝑠𝑠𝑠𝑠�𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜�
+𝐷𝐷 ∗ 𝑚𝑚𝑚𝑚𝑚𝑚�𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝐶𝐶, 0� [in-lbf]

The dimensionality of these parameters are
as follows:

[𝐴𝐴] = [

𝑖𝑖𝑖𝑖 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙

�𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�
2]

[𝐵𝐵] = [𝑖𝑖𝑖𝑖 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙]

[𝐶𝐶] = [
𝑑𝑑𝑑𝑑𝑑𝑑
𝑠𝑠

𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓]

[𝐷𝐷] = [𝑖𝑖𝑖𝑖∗𝑙𝑙𝑙𝑙𝑙𝑙

�𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�
2]

Note quadratic, friction, and linear terms all

are dissipative, that is they result in torques
that oppose flow. Thus, the coefficients A, B,
and D are negative. Also note in this model
that the convention is taken that compressive
flow is positive, so the value of C is positive.

For low flow rates there is no PRV flow
(𝑣𝑣𝑃𝑃𝑃𝑃𝑃𝑃 = 0). Beyond certain critical levels there
are two active flow paths. Let us find what
these critical flow rates are, starting with the
compressive flow direction.

As the compression direction flow builds,
no flow through the PRV occurs until a
critical value of orifice flow is met or
exceeded. This critical compression flow rate
is denoted 𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and occurs at a torque
which is denoted 𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. For flows
beyond the cracking torque threshold, the
flow resistance is taken to linearly increase
with additional flow through the compression
PRV since this matches historical norms:

𝜏𝜏 = 𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝑣𝑣𝑃𝑃𝑃𝑃𝑃𝑃 (4)

Because the cracking torque 𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is a
practical real-world design parameter that is
easily and commonly controlled but the
cracking flow rate 𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is not, 𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
will be retained as a model parameter and

𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 eliminated by determining its value
from other parameters.

To this end, consider that at the critical
compression flow rate 𝑣𝑣𝑃𝑃𝑃𝑃𝑃𝑃 = 0, and all flow
is through the orifice 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.
For this condition, equating the reaction
torque of equation 4 with the one of equation
3 reveals a quadratic dependence of
𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 on 𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐:

𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐴𝐴 𝑣𝑣𝑐𝑐𝑜𝑜𝑜𝑜𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

2 (5)
+𝐷𝐷 𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + (𝐵𝐵 − 𝐷𝐷𝐷𝐷)

Here it was used that compression flow is

positive (𝑠𝑠𝑠𝑠𝑠𝑠�𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜� = 1) and proper values
of parameters were assumed which gives the
logical consequence that flow exceeds the
critical level of C. Only one of the two
solutions for 𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 in equation 5
provides a flow exceeding C, revealing the
critical value of compressive orifice flow:

 𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = (6)
1
2𝐴𝐴

* �−𝐷𝐷 + �𝐷𝐷2 − 4𝐴𝐴�𝐵𝐵 − 𝐷𝐷𝐷𝐷 − 𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐��

For larger flows, a torque balance

𝐴𝐴 ∗ 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜2 + 𝐵𝐵 + 𝐷𝐷 ∗ �𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝐶𝐶� (7)
= 𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ (𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)

Gives the relative flow split between orifice
and compression PRV:

(8)

With similar reasoning for the extension

direction, 𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑒𝑒𝑒𝑒𝑒𝑒 is found
explicitly from other model parameters.

 (9)

(10)

𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

=
−�𝐷𝐷 +𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐� + ��𝐷𝐷 +𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�2 − 4𝐴𝐴(𝐵𝐵 − 𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝐷𝐷𝐷𝐷 − 𝐹𝐹 ∗ 𝑣𝑣_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

2𝐴𝐴

𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑒𝑒𝑒𝑒𝑒𝑒

=
𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒 − �𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒2 − 4𝐴𝐴(𝐵𝐵 + 𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒 ∗ 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)

2𝐴𝐴

𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
1

2𝐴𝐴
�−1 ∗ �−4𝐴𝐴�𝐵𝐵 − 𝜏𝜏𝑒𝑒𝑒𝑒𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐��

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al.
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293

Page 11 of 42

4.5. Numerical Issue with Friction Term
Friction modeling with a strict dependence

on the sign of velocity is a classical numerical
challenge, the “stick-slip” condition. With
the model of the previous section this issue
arose leading to large and non-physical
instantaneous changes in velocity.

As is traditional this numerical difficulty
was overcome by “softening” the response.
Specifically, the approach to modify the term
𝑠𝑠𝑠𝑠𝑠𝑠�𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜� in Equation 3 with a simple
“smoothed” equivalent, hyperbolic tangent
was done:

𝑠𝑠𝑠𝑠𝑠𝑠�𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜� ≈ tanh (𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜/𝑘𝑘)

The parameter k is responsible for the

“softening”. As shown in the following
figure, the full response of 𝑠𝑠𝑠𝑠𝑠𝑠�𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜� = 1 is
achieved at approximately 1/k which is also
approximately the slope of the initial
response about zero.

Figure 15. Friction “Softening”

A study was conducted varying the

parameter k. In the baseline limit where k
tends to infinity severe numerical issues were
encountered. The smallest value considered
(k = .005 deg/s) resolved these numerical
difficulties within the python simulation
environment used and represents an absurdly
slow condition. The realistic travel of this
damper is approximately 60 degrees. With a
rate of .005 deg/sec moving through the full
travel of the suspension would take in excess
of three hours.

This conclusion is not necessarily
extensible to an MBD framework so higher
values of k (softer response) may be
appropriate elsewhere. Since the damper

response for small velocities is not relevant
from a design perspective it may actually be
preferable to move to a even softer response
like (k = .5 deg/s) where the full suspension
travel would occur in two minutes.

4.6. Invertibility of Damper Curve
To implement the complaint model
introduced in Section 6 a monotonic damper
curve is desired such that the inversion is not
ill defined. By inclusion of the softened
response of Section 4.5 this condition is
satisfied.

4.7. Damper Curve Comparison

The values of A, B, C, D, 𝜏𝜏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,
𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, and 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒 were determined utilizing
the optimization library included [4]. The
minimize function was used to reduce the
average error of the approximation relative to
the damper curve points. Constraints were
added to ensure a monotonic damper curve
was retained.

This procedure resulted in a model which
very accurately represented the collected
damper curve of section 3.

Figure 16. Damper Curve Method Comparison

5. DAMPER COMPLIANCE
MODELING

Despite a damper curve which reflects the
steady state response of the damper with high
accuracy, two critical characteristics are
absent.

At low values of torque as the system
changes direction a finite travel low stiffness

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al.
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293

Page 12 of 42

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑘𝑘𝑂𝑂𝑂𝑂𝑂𝑂 ∗ (𝑥𝑥𝑂𝑂𝑂𝑂𝑂𝑂𝑥𝑥𝑅𝑅𝑅𝑅𝑅𝑅)]

region is observed. This “lash” within the
system is independent of velocity. To add this
to the model, a spring with a finite travel was
added in line to the damper system,
replicating the observed response.
Also, a delay in growth and decay of

damping reaction torque as observed. This
observation is expected to be related to
compression and decompression of oil within
the damper. This phenomena was modeled
with a high-stiffness spring in series with the
damper.
Incorporating both observations, a spring-

damper system was developed to consider
lash and oil compliance within the system.
XExt is the input radial position of the rotor,
XRot is the post-lash position, and XOil
incorporates the oil compliance.

Figure 17. Damper Compliance Model

To calculate the reaction force of the

damper, the time series of XOil must be
calculated by integrating a series of functions
over the time array:

• Given:
o XExt is a position vector over

time
o ‘DampF’ is a function of

velocity
o ‘DampV’ the inverse of

‘DampF’
o KLash has a low spring rate
o KOil has a high spring rate

• Calculate candidate for XRot via nodal
analysis:

(11)

• XRot is limited in travel by the lash
limit:

(12)

• The velocity of XOil is calculated and
integrated:

(13)

• Using the XOil previously calculated,
XRot is recalculated and limited
(Equations 12,13). The torque on the
damper is then calculated:

(14)
5.1. Model Results

The updated compliant model provides a
vast improvement in the modeling of the
rotary dampers. By implementing oil and lash
compliant factors, the updated compliant
model correlation error on half round testing
can be reduced to 16% of traditional
modeling error: an average error band of
±271,000 in*lbf down to an average of
±45,000 in*lbf. Figure 18 displays an
example of the reduction of correlation error
on cross-plots for all three modeling
methods.

𝑥𝑥𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑘𝑘𝑂𝑂𝑂𝑂𝑂𝑂 ∗ 𝑥𝑥𝑂𝑂𝑂𝑂𝑂𝑂 + 𝑘𝑘𝐿𝐿𝐿𝐿𝐿𝐿ℎ ∗ 𝑥𝑥𝐸𝐸𝐸𝐸𝐸𝐸

𝑘𝑘𝐿𝐿𝐿𝐿𝐿𝐿ℎ ∗ 𝑘𝑘𝑂𝑂𝑂𝑂𝑂𝑂

𝑥𝑥𝑅𝑅𝑅𝑅𝑅𝑅 = �
𝑥𝑥𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑥𝑥𝐸𝐸𝐸𝐸𝐸𝐸 < −𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝐿𝐿𝐿𝐿𝐿𝐿 𝑥𝑥𝐸𝐸𝐸𝐸𝐸𝐸 − 𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝐿𝐿𝐿𝐿𝐿𝐿

−𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝐿𝐿𝐿𝐿𝐿𝐿 < 𝑥𝑥𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑥𝑥𝐸𝐸𝐸𝐸𝐸𝐸 < 𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝐿𝐿𝐿𝐿𝐿𝐿 𝑥𝑥𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝐿𝐿𝐿𝐿𝐿𝐿 < 𝑥𝑥𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑥𝑥𝐸𝐸𝐸𝐸𝐸𝐸 𝑥𝑥𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝐿𝐿𝐿𝐿𝐿𝐿

�

𝑥𝑥𝑂𝑂𝑂𝑂𝑂𝑂 = �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝑘𝑘𝑂𝑂𝑂𝑂𝑂𝑂 ∗ (𝑥𝑥𝑂𝑂𝑂𝑂𝑂𝑂𝑥𝑥𝑅𝑅𝑅𝑅𝑅𝑅)]𝑑𝑑𝑑𝑑

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al.
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293

Page 13 of 42

Figure 18. Model Comparison Detailing Correlation to
Measured Torque

The time series response shows a vast

improvement, as seen in Figure 19.

Figure 19. Model Comparison Displaying Time Series

6. Conclusion

The updated compliant model provides a
very good prediction but has a slight over
prediction of reaction torque magnitudes. By
introducing “compliance” and “lash”, the
damper performance can be accurately
represented. With the slight extension of this
model to a fully physics based one, future
dampers can be designed to expand the
operating performance envelope of tracked
vehicles.

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al.
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293

Page 14 of 42

7. REFERENCES
[1] “Test Operations Procedure (TOP) 1-1-

014 Ride Dynamics”, Aberdeen Test
Center MD Commander of Development
and Test Command, 2005.

[2] S. Allen, D. Ostberg, “Laboratory Testing
of Tracked Vehicle Suspensions”, In
Proceedings of the Ground Vehicle
Systems Engineering and Technology
Symposium (GVSETS), NDIA, Novi, MI,
Aug. 10-12, 2021.

[3] P. Allen, “Models for Dynamic
Simulation of Tank Track Components,”
PhD Thesis, Def. College of Mgmt. and
Tech., Cranfield Univ., 2006.

[4] P. Virtanen et al., “SciPy 1.0:
Fundamental algorithms for scientific
computing in python,” Nature Methods,
vol. 17, no. 3, pp. 261–272, 2020.

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al.
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293

Page 15 of 42

8. APPENDIXES

Appendix I. Python Code: Derivative Method from Tim Hunter at Wolf Star Tech, Modified by Kenneth
Redner for use in Rotary Damper Curve Generation

Pg. 16

Appendix II. Python Code: Generate Test Points and calculate Best-Fit damper curve coefficients to establish
damping function.

Pg. 18

Appendix III. Python Code: Physics Motivated Model and Optimization Function Pg. 21
Appendix IV. Python Code: Damper Updated Compliant Model Pg. 22
Appendix V. Test Dashboard: Ramp Input with Temperature Variation Pg. 25
Appendix VI. Test Dashboard: Sinusoidal Input with Temperature Variation Pg. 27
Appendix VII. Test Dashboard: Half Round Input with Temperature Variation Pg. 31
Appendix VIII. Test Dashboard: Ramp Input with Model Variation Pg. 33
Appendix IX. Test Dashboard: Sinusoidal Input with Model Variation Pg. 36
Appendix X. Test Dashboard: Half Round Input with Model Variation Pg. 39
Appendix XI. Test Dashboard: Half Round Input with Model Variation Cross-Plots Pg. 41

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al.
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293

Page 16 of 42

Appendix I. Python Code: Derivative Method from Tim Hunter at Wolf Star Tech, Modified by Kenneth Redner for use in Rotary
Damper Curve Generation

import numpy as np
def tfuDiff(xyData, deriv = 1, smoothPts=20, polyOrder = 3, yTol=0.0, symmetryFlag=True, minPts=1):
 """
 tfuDiff calculates the derivative of the given functions by approximating the function as polynomial over the
 user specified segments. The derivative may be first or second order derivatives.
 Parameters:

 tfuDict: Dictionary of xyData pairs to be processed
 tfuOrder: List of keys in the dictionary of xyData pairs to be processed
 deriv: The order of the derivative. Allowable values are 1 or 2
 smoothPts: Number of points to be used in the polynomial fitting
 polyOrder: The order of the polynomial to be fit
 Returns:

 diffDict, diffOrder - xyData dictionary and keys containing derivatives and the approximated curves

 Usage:

 diffDict, diffOrder = tfuDiff(tfuDict, tfuOrder, deriv=1, smoothPts=20, polyOrder=3)

 """
 if polyOrder > smoothPts:
 polyOrder = smoothPts
 #end if

 diffDict = {}
 diffOrder = []

 x, y = zip(*xyData)
 x = np.array(x)
 y = np.array(y)
 nPts = len(x)
 yDots = []
 y2Dots = []
 yApproxs = []
 for i in range(nPts):
 iStart = i - smoothPts
 if iStart < 0:
 iStart = 0
 # end if
 iEnd = i + smoothPts
 if iEnd >= nPts:
 iEnd = nPts - 1
 # end if
 if yTol != 0:
 trgtVal = y[i]
 for iTest in range(i, iStart, -1):
 testVal = y[iTest]
 if np.abs(testVal - trgtVal) > yTol:
 iStart = iTest
 break
 #end if
 #end iTest
 for iTest in range(i, iEnd):
 testVal = y[iTest]
 if np.abs(testVal - trgtVal) > yTol:
 iEnd = iTest
 break
 #end if
 #end iTest
 if symmetryFlag:
 backDiff = i - iStart
 forwardDiff = iEnd - i
 if backDiff != forwardDiff:
 minDiff = min(backDiff, forwardDiff)
 iDistStart = i
 iDistEnd = nPts - i
 minDist = min(iDistStart, iDistEnd)
 if minDiff > minDist:
 minDiff = minDist
 #end if
 if minDiff == 0:
 minDiff = max(backDiff, forwardDiff, minDist)
 #end if
 iStart = i - minDiff
 iEnd = i + minDiff
 if iStart < 0: iStart = 0
 if iEnd > nPts: iEnd = nPts
 #end if
 #end if
 if i - iStart < minPts:
 iStart = i - minPts
 #end if
 if iEnd - i < minPts:
 iEnd = i + minPts
 #end if
 if iStart < 0: iStart = 0
 if iEnd > nPts: iEnd = nPts
 #end if

 xSeg = x[iStart:iEnd]
 xSeg = np.array(xSeg)
 ySeg = y[iStart:iEnd]
 ySeg = np.array(ySeg)
 # xx = [xSeg**0, xSeg, xSeg**2, xSeg**3, xSeg**4] # 5 x 20
 xx = []
 for iOrder in range(polyOrder):
 xx.append(xSeg**iOrder)
 #end iOrder
 xx = np.array(xx)
 xx = xx.T # 20 x 5
 #
 # x * c = y
 # x^T * x * c = x^T * y
 # [x^T * x]^-1 * [x^T * x] * c = [x^T * x]^-1 * x^T * y
 # c = [x^T * x]^-1 * x^T * y
 # c = [x^T * x]^-1 * x^T * y

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al.
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293

Page 17 of 42

 # c = [[5 x20] [20 x 5]] * [5 x 20] * [20 x 1]
 # c = [5 x 5] * [5 x 20] * [20 x 1]
 # c = [5 x 20] * [20 x 1]
 # c = [5 x 1]
 #
 #
 xTemp = np.dot(xx.T, xx) # 5 x 5
 try:
 xTemp = np.linalg.inv(xTemp) # 5 x 5
 except:
 # display(xTemp)
 break
 xTemp = np.dot(xTemp, xx.T) # 5 x 20
 c = np.dot(xTemp, ySeg) # 5 x 1
 xCur = x[i]
 yApprox = c[0]
 for iOrder in range(1, polyOrder):
 yApprox = yApprox + c[iOrder] * xCur ** iOrder
 # end iOrder
 yApproxs.append(yApprox)
 if deriv == 1:
 # y = c[0] + c[1] * x**1 + c[2] * x**2 + c[3] * x**3 + c[4] * x**4
 # dy/dt = c[1] + 2 * c[2] * x**1 + 3 * c[3] * x**2 + 4 * c[4] * x**3
 # d2y/dt2 = 2 * c[2] + 6 * c[3] * x**1 + 12 * c[4] * x**2
 # yApprox = c[0] + c[1]*xCur + c[2]*xCur**2 + c[3]*xCur**3 + c[4]*xCur**4
 # yDot = c[1] + 2*c[2]*xCur + 3*c[3]*xCur**2 + 4*c[4]*xCur**3
 # y2Dot = 2 * c[2] + 2 * 3 * c[3] * xCur + 3 * 4 * c[4] * xCur**2

 yDot = c[1]
 for iOrder in range(2, polyOrder):
 yDot = yDot + iOrder * c[iOrder] * xCur ** (iOrder-1)
 #end iOrder
 yDots.append(yDot)
 elif deriv == 2:
 if polyOrder == 2:
 print('2nd derivative does not exist for y=C0x^0+C1*x^1')
 return {}, []
 #end if
 # y2Dot = 2*c[2] + 6*c[3]*xCur + 12*c[4]*xCur**2
 y2Dot = 2*c[2]
 for iOrder in range(3, polyOrder):
 y2Dot = (iOrder-1) * iOrder * xCur ** (iOrder - 2)
 #end iOrder
 y2Dots.append(y2Dot)
 # end if
 # end i
 #
 # Store the Approximated curve
 #

 yApproxs = np.array(yApproxs)
 xyData = list(zip(x, yApproxs))
 if deriv == 1:
 yDots = np.array(yDots)
 xyData = list(zip(x, yDots))

 elif deriv == 2:
 y2Dots = np.array(y2Dots)
 xyData = list(zip(x, y2Dots))

end funcName

 return xyData

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al.
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293

Page 18 of 42

Appendix II. Python Code: Generate Test Points and calculate Best-Fit damper curve coefficients to establish damping function.

Point Generation
from scipy.signal import sosfiltfilt, butter
import matplotlib.pyplot as plt
import numpy as np

def butter_filt(input_signal,sampleRate=2000,filt_freq=400,filt_order=2):
 # sampleRate = 2000 # Hz imported data sample rate, could be calculated instead
 # filt_freq = 400 # Hz for butterworth filter applied to data
 # filt_order = 2 # Applied forward and backward so actually 2x this value
 sos = butter(filt_order, filt_freq, fs = sampleRate, output='sos')
 output_signal = sosfiltfilt(sos,input_signal)
 return(output_signal)

speeds_sorted={
 'Original': ['gas','0p1','0p5','001','005','010','025',
 '050','100','200','300','400','500'],
 'Rerun' : [str(i).zfill(3) for i in range(1,51)],
 'All' : ['gas','0p1','0p5']}
speeds_sorted['All'].extend([str(i).zfill(3) for i in range(1,51)])
speeds_sorted['All'].extend(['100','200','300','400','500'])

def make_damp_array(speeds_sorted,run_data,dataset):
 working_df_dict = [f'Ramp_250_{i}' for i in speeds_sorted[dataset]]
 damp_array = []
 damp_array_disp = []
 vel_list = []
 for fileindex in list(working_df_dict):

 data = run_data[dataset][fileindex]
 time_in = np.array(data['Time [s]'])
 ang_in = np.array(data['Rotary Angle [deg]'])
 ang_filt = butter_filt(ang_in)
 torq_in = np.array(data['Rotary Torque [ft-lbf]']) * 12
 target_vel = fileindex[-3:].replace('p','.').replace('gas','.05')

 xyData = list(zip(time_in, ang_filt))
 xyData = tfuDiff(xyData, deriv = 1, smoothPts=20, polyOrder = 3,
 yTol=0.0, symmetryFlag=True, minPts=1)
 dtime_in, der_vel = zip(*xyData)
 der_vel_abs = [abs(i) for i in der_vel]
 mean_vel = np.mean([i for i in der_vel_abs if i < 1.2*float(target_vel)
 and i > 0.8*float(target_vel)])

 damp_array.append([mean_vel,-1*min(torq_in),-1*max(torq_in)])
 damp_array_disp.append(['{:.3E}'.format(mean_vel),
 '{:.3E}'.format(min(-1*torq_in)),
 '{:.3E}'.format(max(-1*torq_in))])

 vel_list.append(target_vel)
 damp_array = np.transpose(damp_array)
 return damp_array

damp_array = {}
for dataset in list(run_data):
 damp_array[dataset] = make_damp_array(speeds_sorted,run_data,dataset)
del speeds_sorted,run_data,dataset

#adjust points w/ -1<Vel<0 to match curve
damp_array['All'][2][0:3] += damp_array['Rerun'][2][0]-damp_array['Original'][2][3]
import scipy.optimize as spo

def linear_approx(vel_lookup,tq_lookup):
 class opt_curve:
 def __init__(self,vel_lookup,tq_lookup):
 self.vel_lookup = vel_lookup
 self.tq_lookup = tq_lookup

 #Function To minimize
 def f(self, C):
 error = np.zeros(len(self.vel_lookup))
 for (i,vel) in enumerate(self.vel_lookup):
 # Error = Ax + B - y
 error[i] = ((C[0]*vel + C[1] - self.tq_lookup[i])/self.tq_lookup[i])**2
 error_sum = sum(error)*10000 #Error Scaling necessary
 return error_sum

 opt_curve1=opt_curve(vel_lookup,tq_lookup)

 #First Guess
 C_start = [1,np.sign(vel_lookup[0])]

 #Constraints
 cons = ({'type': 'ineq', 'fun': lambda C: C[0]}) #B must be non-negative

 #Optimization
 result = spo.minimize(opt_curve1.f,C_start,constraints=cons)

 C_dampV = result.x
 R2_dampV = result.fun
 print('-'*100)
 # print(result.message)
 print('Optimized Linear for Damper Curve:')
 print(f'\t y = ({round(C_dampV[0],4)})x + ({round(C_dampV[1],4)})')
 print(f'\t R^2: {R2_dampV}')

 return(C_dampV)

def quadratic_approx(vel_lookup_neg,tq_lookup_neg,vel_lookup_pos,tq_lookup_pos):
 class opt_curve:
 def __init__(self,vel_lookup_pos,tq_lookup_pos,vel_lookup_neg,tq_lookup_neg):
 self.vel_lookup_pos = vel_lookup_pos
 self.tq_lookup_pos = tq_lookup_pos
 self.vel_lookup_neg = vel_lookup_neg
 self.tq_lookup_neg = tq_lookup_neg

 #Function To minimize
 def f(self, C):
 error = 0
 count = 0

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al.
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293

Page 19 of 42

 for (i,vel) in enumerate(self.vel_lookup_pos):
 # Error = Ax^2 + Bx+ C - y
 error += ((C[0]*pow(vel,2) + C[1]*vel + C[2] - self.tq_lookup_pos[i]))**2
 count += 1
 for (i,vel) in enumerate(self.vel_lookup_neg):
 # Error = Ax^2 + Bx+ C - y
 error += ((-C[0]*pow(vel,2) - C[1]*vel - C[2] - self.tq_lookup_neg[i]))**2
 count += 1
 error_sum = error/count #Error Scaling necessary
 return error_sum

 opt_curve1=opt_curve(vel_lookup_pos,tq_lookup_pos,vel_lookup_neg,tq_lookup_neg)

 #First Guess
 C_start = [1,1,1]

 #Constraints
 # cons = ({'type': 'ineq', 'fun': lambda C: (-C[1])/(2*C[0])}) #-b/2A must be non-negative
 cons = ({'type': 'ineq', 'fun': lambda C: C[0]},
 {'type': 'ineq', 'fun': lambda C: C[2]}) #A,C must be non-negative

 #Optimization
 result = spo.minimize(opt_curve1.f,C_start,constraints=cons)
 # result = spo.minimize(opt_curve1.f,C_start)
 C_dampVpos = [0,0,0]
 C_dampVpos[0] = -1*result.x[0]
 C_dampVpos[2] = -1*result.x[2]

 R2_dampV = result.fun

 print('-'*100)
 print(result.message)
 print('Optimized Quadratics for Damper Curve:')
 print(f'\t y = ({round(C_dampVpos[0],4)})x^2 + ({round(C_dampVpos[1],4)})x + ({round(C_dampVpos[2],4)})')
 print(f'\t R^2: {R2_dampV}')
 return(C_dampVpos)

def Quad_Lin_intercept(C_lin,C_quad):
 class functions:
 def __init__(self,C_lin,C_quad):
 self.C_lin = C_lin
 self.C_quad = C_quad
 def f(self,z):
 x,y = z
 f_lin = self.C_lin[0]*x + self.C_lin[1] - y
 f_quad = self.C_quad[0]*pow(x,2) + self.C_quad[1]*x + self.C_quad[2]-y
 return(f_lin,f_quad)
 functions1 = functions(C_lin,C_quad)

 # #First Guess
 guess = [25*np.sign(C_quad[0]),50000*np.sign(C_quad[0])]
 # #Solve
 intercept = spo.fsolve(functions1.f,guess,)
 print('-'*100)
 print(f'Linear/Quadradtic Intercept: {intercept}')
 return intercept

def Lin_Lin_intercept(C_lin,C_lin2):
 class functions:
 def __init__(self,C_lin,C_lin2):
 self.C_lin = C_lin
 self.C_lin2 = C_lin2
 def f(self,z):
 x,y = z
 f_lin = self.C_lin[0]*x + self.C_lin[1] - y
 f_lin2 = self.C_lin2[0]*x + self.C_lin2[1] - y
 return(f_lin,f_lin2)
 functions1 = functions(C_lin,C_lin2)

 # #First Guess
 guess = [C_lin[0],C_lin[1]]

 # #Solve
 intercept = spo.fsolve(functions1.f,guess)
 print('-'*100)
 print(f'Linear/Linear Intercept: {intercept}')
 return intercept

Rebound = R, Jounce = J
lookup_vel = {
 'R-Valve': [-1*i for i in damp_array['All'][0][17:55]], #damp_array['All']
 # 'R-Leakage, Seal': [-1*i for i in damp_array['All'][0][17:17]],
 'R-Leakage, No Seal': [-1*i for i in damp_array['All'][0][:17]],
 'J-Leakage, No Seal': damp_array['All'][0][:17],
 'J-Leakage, Seal': damp_array['All'][0][17:23],
 'J-Valve': damp_array['All'][0][23:55]}
lookup_tq = {
 'R-Valve': damp_array['All'][2][17:55],
 # 'R-Leakage, Seal': damp_array['All'][2][17:17],
 'R-Leakage, No Seal': damp_array['All'][2][:17],
 'J-Leakage, No Seal': damp_array['All'][1][:17],
 'J-Leakage, Seal': damp_array['All'][1][17:23],
 'J-Valve': damp_array['All'][1][23:55]}

lookup_coeff = {
 'R-Valve': linear_approx(lookup_vel['R-Valve'],
 lookup_tq['R-Valve']),
 # 'R-Leakage, Seal': linear_approx(lookup_vel['R-Leakage, Seal'],
 # lookup_tq['R-Leakage, Seal']),
 'R-Leakage, No Seal': quadratic_approx(lookup_vel['R-Leakage, No Seal'],
 lookup_tq['R-Leakage, No Seal'],
 lookup_vel['J-Leakage, No Seal'],
 lookup_tq['J-Leakage, No Seal']),
 'NegV Fix': [],
 'PosV Fix': [],
 'J-Leakage, No Seal': [],
 'J-Leakage, Seal': linear_approx(lookup_vel['J-Leakage, Seal'],
 lookup_tq['J-Leakage, Seal']),
 'J-Valve': linear_approx(lookup_vel['J-Valve'],
 lookup_tq['J-Valve'])}
lookup_coeff['J-Leakage, No Seal'] = [-1*i for i in lookup_coeff['R-Leakage, No Seal']]

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al.
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293

Page 20 of 42

fixpoint = 0.005
lookup_intercept = {
 'R-Valve_R-Leakage, No Seal': Quad_Lin_intercept(lookup_coeff['R-Valve'],lookup_coeff['R-Leakage, No Seal']),
 'R-Leakage, No Seal_NegV Fix':[-fixpoint,lookup_coeff['R-Leakage, No Seal'][0]*pow(-fixpoint,2) + lookup_coeff['R-Leakage, No Seal'][1]*(-fixpoint) + lookup_coeff['R-Leakage, No Seal'][2]],
 'PosV Fix_J-Leakage, No Seal':[fixpoint,lookup_coeff['J-Leakage, No Seal'][0]*pow(fixpoint,2) + lookup_coeff['J-Leakage, No Seal'][1]*(fixpoint) + lookup_coeff['J-Leakage, No Seal'][2]],
 'J-Leakage, No Seal_J-Leakage, Seal': Quad_Lin_intercept(lookup_coeff['J-Leakage, Seal'],lookup_coeff['J-Leakage, No Seal']),
 'J-Leakage, Seal_J-Valve': Lin_Lin_intercept(lookup_coeff['J-Leakage, Seal'],lookup_coeff['J-Valve'])}
del fixpoint
lookup_coeff['NegV Fix'] = lookup_intercept['R-Leakage, No Seal_NegV Fix'][1]/lookup_intercept['R-Leakage, No Seal_NegV Fix'][0]
lookup_coeff['PosV Fix'] = lookup_intercept['PosV Fix_J-Leakage, No Seal'][1]/lookup_intercept['PosV Fix_J-Leakage, No Seal'][0]

print(lookup_coeff['NegV Fix'])
print(lookup_coeff['PosV Fix'])

declare damping function "dampF"
def dampF(vel_in):
 f_out = np.piecewise(vel_in,
 [(vel_in<=lookup_intercept['R-Valve_R-Leakage, No Seal'][0]),
 ((lookup_intercept['R-Valve_R-Leakage, No Seal'][0] < vel_in)&(vel_in < lookup_intercept['R-Leakage, No Seal_NegV Fix'][0])),
 (lookup_intercept['R-Leakage, No Seal_NegV Fix'][0]<=vel_in) & (vel_in<=0),
 (0<vel_in) & (vel_in<=lookup_intercept['PosV Fix_J-Leakage, No Seal'][0]),
 ((lookup_intercept['PosV Fix_J-Leakage, No Seal'][0] < vel_in) & (vel_in < lookup_intercept['J-Leakage, No Seal_J-Leakage, Seal'][0])),
 ((lookup_intercept['J-Leakage, No Seal_J-Leakage, Seal'][0] < vel_in) & (vel_in < lookup_intercept['J-Leakage, Seal_J-Valve'][0])),
 (lookup_intercept['J-Leakage, Seal_J-Valve'][0] <= vel_in)],

 [lambda vel: lookup_coeff['R-Valve'][0]*vel + lookup_coeff['R-Valve'][1],
 lambda vel: lookup_coeff['R-Leakage, No Seal'][0]*pow(vel,2) + lookup_coeff['R-Leakage, No Seal'][1]*vel + lookup_coeff['R-Leakage, No Seal'][2],
 lambda vel: lookup_coeff['NegV Fix']*vel,
 lambda vel: lookup_coeff['PosV Fix']*vel,
 lambda vel: lookup_coeff['J-Leakage, No Seal'][0]*pow(vel,2) + lookup_coeff['J-Leakage, No Seal'][1]*vel + lookup_coeff['J-Leakage, No Seal'][2],
 lambda vel: lookup_coeff['J-Leakage, Seal'][0]*vel + lookup_coeff['J-Leakage, Seal'][1],
 lambda vel: lookup_coeff['J-Valve'][0]*vel + lookup_coeff['J-Valve'][1]])
 return(f_out)

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al.
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293

Page 21 of 42

Appendix III. Python Code: Physics Motivated Model and Optimization Function
def reacF_physics(vel_in,
 A = 257,
 B = 3999,
 C = 14,
 D = 16391,
 J = 208318,
 F = 448,
 K = -67386,
 H = 346
):
 from math import sqrt
 leakage = {
 'Quad' : A, #Quadratic Coefficient, A
 'Fric' : B, #Friction Coefficient, B
 'Thrsh' : C, #Higher Leakage resistance threshould, C
 'Slope' : D #Higher Leakage resistance slope, D
 }
 valve = {
 'C Tq' : J, #Cracking Tq, J
 'C Vel Rt' : [], #Cracking Vel Rate, E
 'C Fl Cr': F, #Flow Characteristic, F
 'E Tq' : K, #Cracking Tq, K
 'E Vel Rt' : [], #Cracking vel rate, G
 'E Fl Cr': H, #Flow Characteristic, H
 'Area': 13.84, #Loaded Area
 'C of P': 4.24 #Center of Pressure (radius)
 }

 valve['C Vel Rt'] = (-leakage['Slope'] + sqrt(leakage['Slope']**2-4*
 leakage['Quad']*(leakage['Fric']-valve['C Tq']-leakage['Slope']*
 leakage['Thrsh'])))/(2*leakage['Quad'])
 valve['E Vel Rt'] = (-1*sqrt(-1*(valve['E Tq']+leakage['Fric'])/(leakage['Quad'])))
 valve['C Pressure'] = valve['C Tq']/valve['C of P']/valve['Area']
 valve['E Pressure'] = valve['E Tq']/valve['C of P']/valve['Area']
 curve = []
 vol_leakage = []
 reacF = []
 valve_flow = []

 for [i,vel] in enumerate(vel_in):
 if vel < valve['E Vel Rt']:
 curve.append('hi_ext')
 elif vel < leakage['Thrsh']:
 curve.append('lo_sp')
 elif vel < valve['C Vel Rt']:
 curve.append('med_comp')
 else:
 curve.append('hi_comp')

 if curve[i]=='lo_sp' or curve[i]=='med_comp':
 vol_leakage.append(vel)
 elif curve[i]=='hi_comp':
 vol_leakage.append((-(leakage['Slope']+valve['C Fl Cr'])+sqrt(((
 leakage['Slope']+valve['C Fl Cr'])**2)-4*leakage['Quad']*(
 leakage['Fric']-valve['C Tq']-leakage['Slope']*leakage['Thrsh']-
 valve['C Fl Cr']*vel)))/(2*leakage['Quad']))
 elif curve[i]=='hi_ext':
 # (H_-SQRT(H_^2-4*A_*(B_+K_+H_*V4)))/(2*A_)
 vol_leakage.append((valve['E Fl Cr']-sqrt((valve['E Fl Cr']**2)-4*
 leakage['Quad']*(leakage['Fric']+valve['E Tq']+valve['E Fl Cr']*
 vel)))/(2*leakage['Quad']))
 valve_flow.append(vel-vol_leakage[i])
 reacF.append(leakage['Quad']*np.sign(vol_leakage[i])*(vol_leakage[i]**2) +
 leakage['Fric']*np.sign(vol_leakage[i]) + leakage['Slope']*
 max(vol_leakage[i]-leakage['Thrsh'],0))
 func_outputs = {
 'Vol Leakage': vol_leakage,
 'Vol Valve': valve_flow,
 'Tq Reac': reacF,
 'Curve': curve
 }
 return func_outputs
def P_model_opt(vel_lookup,tq_lookup):
 class opt_func:
 def __init__(self,vel_lookup,tq_lookup):
 self.vel_lookup = vel_lookup
 self.tq_lookup = tq_lookup

 def f(self,params):
 error = 0
 count = 0
 for (i,vel) in enumerate(self.vel_lookup):
 error += abs(reacF_physics([vel],
 A=params[0],
 B=params[1],
 # C=params[2],
 D=params[3],
 J=params[4],
 F=params[5],
 K=params[6],
 H=params[7],
)['Tq Reac']-self.tq_lookup[i])
 count += 1
 error_sum = error/count
 return error_sum
 opt_func1 = opt_func(vel_lookup,tq_lookup)

 param_start =[255,3800,14,16000,205000,400,-66000,400]
 # param_start =[255,3800,14,16000]

 cons = {
 'type':'ineq','fun': lambda params: params[3]**2-4*params[0]*(
 params[1]-params[4]-params[3]*params[2]),
 'type':'ineq','fun':lambda params:-1*(params[4]+params[1])/(params[0]),
 'type':'ineq','fun':lambda params: params[0],
 'type':'ineq','fun':lambda params: params[1],
 'type':'ineq','fun':lambda params: params[2],
 'type':'ineq','fun':lambda params: params[3],
 'type':'ineq','fun':lambda params: params[4],
 'type':'ineq','fun':lambda params: params[5],

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al.
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293

Page 22 of 42

 'type':'ineq','fun':lambda params: -1*params[6],
 'type':'ineq','fun':lambda params: params[7],
 }
 result = spo.minimize(opt_func1.f,param_start,constraints=cons)
 display(f'A = {result.x[0]}')
 display(f'B = {result.x[1]}')
 display(f'C = {result.x[2]}')
 display(f'D = {result.x[3]}')
 display(f'E = {result.x[4]}')
 display(f'F = {result.x[5]}')
 display(f'G = {result.x[6]}')
 display(f'H = {result.x[7]}')
 display(result.message)
 display(f'R^2: {result.fun}')

vel_lookup = [-i for i in damp_array['All'][0][:-3]]
vel_lookup.extend([i for i in damp_array['All'][0][:-3]])
tq_lookup = [i for i in damp_array['All'][2][:-3]]
tq_lookup.extend([i for i in damp_array['All'][1][:-3]])
P_model_opt(vel_lookup,tq_lookup)

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al.
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293

Page 23 of 42

Appendix IV. Python Code: Damper Updated Compliant Model
def get_reacF_from_ang(time,ang,inv_vel=False,inv_tq=False):
 """This function imports necessary libraries, as well as runs the ODE to find the calculated torque.
 You may need to invert `reactionF` depending on the orientation of
 the sensor."""
 import numpy as np
 from re import X
 from scipy.integrate import odeint
 from scipy.interpolate import interp1d
 class calc_dampf:
 def __init__(self,time_filt,ang_filt,inv_vel,inv_tq):
 self.x_lashLim = 0.5
 self.k_oil = 47e3
 self.k_lash = 500

 self.time_filt = time_filt
 self.ang_filt = ang_filt

 self.lookup_coeff = {
 'R-Valve': [275.782,-63748.0],
 'R-Leakage, No Seal':[-255.259,0,-3837.05],
 'NegV Fix': [767412],
 'PosV Fix': [767412],
 'J-Leakage, No Seal': [255.259,0,3837.05],
 'J-Leakage, Seal': [24529.1,-287731],
 'J-Valve': [395.477,200814]
 }
 self.lookup_intercept = {
 'R-Valve_R-Leakage, No Seal': [-15.8699,-68124.6],
 'R-Leakage, No Seal_NegV Fix':[-0.005,-3837.06],
 'PosV Fix_J-Leakage, No Seal':[0.005,3837.06],
 'J-Leakage, No Seal_J-Leakage, Seal':[13.8961,53127.9],
 'J-Leakage, Seal_J-Valve':[20.2433,208820]
 }

 if inv_vel: self.inv_vel = 1
 else: self.inv_vel = -1

 if inv_tq: self.inv_tq = -1
 else: self.inv_tq = 1

 def vel_k_damper(self,x_oil, time_val):
 """
 INPUTS k12, k01, x2, x0, time_val
 CALCULATED x1, x.2
 RETURN x.2

 Node x1 is point between finite travel spring and external angle x0
 It is connected to external angle by a low spring rate finite travel
 k12 * (x2 - x1) = k01 * (x1 - x0) (Force blance at node x1)
 We know x0, x2 comes from ODE find x1 directly
 x1_canidate = (k12 * x2 + k01* x0) / (k01+k12)
 Clamp x1 by limiting diff from x0

 Solve ODE with spring BTW x2 and x1
 x2 is point between damper and 50k spring
 x.2 = dampV[k12 * (x2 - x1)] (Force blance between spring and damper)
 """
 x_ext = self.ang_filt[np.searchsorted(self.time_filt, time_val)-1] # Get cmd angle
 x_rot_candidate = (self.k_oil * x_oil + self.k_lash* x_ext) / (self.k_lash+self.k_oil)
 xdiff = x_rot_candidate - x_ext
 if -self.x_lashLim < xdiff < self.x_lashLim:
 x_rot = x_rot_candidate
 elif self.x_lashLim < xdiff:
 x_rot = x_ext + self.x_lashLim
 else:
 x_rot = x_ext - self.x_lashLim
 force = self.k_oil*(x_oil-x_rot)
 vel_new = self.inv_vel*self.dampV(force*self.inv_tq)
 return (vel_new)
 def calc_res(self):
 x_ext = self.ang_filt
 res = odeint(self.vel_k_damper, x_ext[0], self.time_filt)
 x_oil = res[:,0]
 x_rot_candidate = (self.k_oil * x_oil + self.k_lash* x_ext) / (self.k_lash+self.k_oil)
 force = 0*x_oil
 x_rot = 0*x_rot_candidate
 for (i,x1_val) in enumerate(x_rot_candidate):
 xdiff = x_rot_candidate[i] - x_ext[i]
 if -self.x_lashLim <= xdiff <= self.x_lashLim:
 x_rot[i] = x_rot_candidate[i]
 elif self.x_lashLim < xdiff:
 x_rot[i] = x_ext[i] + self.x_lashLim
 elif self.x_lashLim > xdiff:
 x_rot[i] = x_ext[i] - self.x_lashLim

 force[i] = self.k_oil*(x_oil[i]-x_rot[i])
 x_rot_vel = self.inv_vel*self.dampV(force*self.inv_tq)
 fric_force = self.dampF(x_rot_vel*self.inv_vel)*self.inv_tq - self.k_oil*(x_oil-x_rot)
 reactionF = self.dampF(x_rot_vel*self.inv_vel)*self.inv_tq - fric_force
 return (reactionF, x_rot_vel, x_ext, x_rot, x_oil)
 def dampF(self, vel_in):
 f_out = np.piecewise(vel_in,
 [(vel_in<=self.lookup_intercept['R-Valve_R-Leakage, No Seal'][0]),
 ((self.lookup_intercept['R-Valve_R-Leakage, No Seal'][0] < vel_in)&(vel_in < self.lookup_intercept['R-Leakage, No Seal_NegV Fix'][0])),
 (self.lookup_intercept['R-Leakage, No Seal_NegV Fix'][0]<=vel_in) & (vel_in<=0),
 (0<vel_in) & (vel_in<=self.lookup_intercept['PosV Fix_J-Leakage, No Seal'][0]),
 ((self.lookup_intercept['PosV Fix_J-Leakage, No Seal'][0] < vel_in) & (vel_in < self.lookup_intercept['J-Leakage, No Seal_J-Leakage, Seal'][0])),
 ((self.lookup_intercept['J-Leakage, No Seal_J-Leakage, Seal'][0] < vel_in) & (vel_in < self.lookup_intercept['J-Leakage, Seal_J-Valve'][0])),
 (self.lookup_intercept['J-Leakage, Seal_J-Valve'][0] <= vel_in)],

 [lambda vel: self.lookup_coeff['R-Valve'][0]*vel + self.lookup_coeff['R-Valve'][1],
 lambda vel: self.lookup_coeff['R-Leakage, No Seal'][0]*pow(vel,2) + self.lookup_coeff['R-Leakage, No Seal'][1]*vel + self.lookup_coeff['R-Leakage, No Seal'][2],
 lambda vel: self.lookup_coeff['NegV Fix']*vel,
 lambda vel: self.lookup_coeff['PosV Fix']*vel,
 lambda vel: self.lookup_coeff['J-Leakage, No Seal'][0]*pow(vel,2) + self.lookup_coeff['J-Leakage, No Seal'][1]*vel + self.lookup_coeff['J-Leakage, No Seal'][2],
 lambda vel: self.lookup_coeff['J-Leakage, Seal'][0]*vel + self.lookup_coeff['J-Leakage, Seal'][1],
 lambda vel: self.lookup_coeff['J-Valve'][0]*vel + self.lookup_coeff['J-Valve'][1]])
 return(f_out)
 def dampV(self, f_in):
 vel_out = np.piecewise(f_in,

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al.
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293

Page 24 of 42

 [(f_in<=self.lookup_intercept['R-Valve_R-Leakage, No Seal'][1]),
 ((self.lookup_intercept['R-Valve_R-Leakage, No Seal'][1] < f_in)&(f_in < self.lookup_intercept['R-Leakage, No Seal_NegV Fix'][1])),
 (self.lookup_intercept['R-Leakage, No Seal_NegV Fix'][1]<=f_in) & (f_in<=0),
 (0<f_in) & (f_in<=self.lookup_intercept['PosV Fix_J-Leakage, No Seal'][1]),
 ((self.lookup_intercept['PosV Fix_J-Leakage, No Seal'][1] < f_in) & (f_in < self.lookup_intercept['J-Leakage, No Seal_J-Leakage, Seal'][1])),
 ((self.lookup_intercept['J-Leakage, No Seal_J-Leakage, Seal'][1] < f_in) & (f_in < self.lookup_intercept['J-Leakage, Seal_J-Valve'][1])),
 (self.lookup_intercept['J-Leakage, Seal_J-Valve'][1] <= f_in)],
 [lambda torq: (torq - self.lookup_coeff['R-Valve'][1])/self.lookup_coeff['R-Valve'][0],
 lambda torq: (pow(4*self.lookup_coeff['R-Leakage, No Seal'][0]*torq-4*self.lookup_coeff['R-Leakage, No Seal'][0]*self.lookup_coeff['R-Leakage, No Seal'][2]+pow(self.lookup_coeff['R-Leakage, No
Seal'][1],2),1/2)+self.lookup_coeff['R-Leakage, No Seal'][1])/(2*self.lookup_coeff['R-Leakage, No Seal'][0]),
 lambda torq: torq/self.lookup_coeff['NegV Fix'],
 lambda torq: torq/self.lookup_coeff['PosV Fix'],
 lambda torq: (pow(4*self.lookup_coeff['J-Leakage, No Seal'][0]*torq-4*self.lookup_coeff['J-Leakage, No Seal'][0]*self.lookup_coeff['J-Leakage, No Seal'][2]+pow(self.lookup_coeff['J-Leakage, No
Seal'][1],2),1/2)+self.lookup_coeff['J-Leakage, No Seal'][1])/(2*self.lookup_coeff['J-Leakage, No Seal'][0]),
 lambda torq: (torq - self.lookup_coeff['J-Leakage, Seal'][1])/self.lookup_coeff['J-Leakage, Seal'][0],
 lambda torq: (torq - self.lookup_coeff['J-Valve'][1])/self.lookup_coeff['J-Valve'][0]])
 return(vel_out)
 get_results = calc_dampf(time,ang,inv_vel,inv_tq)
 return (get_results.calc_res())

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al.
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293

Page 25 of 42

Appendix V. Test Dashboard: Ramp Input with Temperature Variation

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al.
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293

Page 26 of 42

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al.
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293

Page 27 of 42

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al.
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293

Page 28 of 42

Appendix VI. Test Dashboard: Sinusoidal Input with Temperature Variation

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al.
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293

Page 29 of 42

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al.
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293

Page 30 of 42

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al.
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293

Page 31 of 42

Appendix VII. Test Dashboard: Half Round Input with Temperature Variation

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al.
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293

Page 32 of 42

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al.
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293

Page 33 of 42

Appendix VIII. Test Dashboard: Ramp Input with Model Variation

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al.
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293

Page 34 of 42

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al.
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293

Page 35 of 42

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al.
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293

Page 36 of 42

Appendix IX. Test Dashboard: Sinusoidal Input with Model Variation

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al.
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293

Page 37 of 42

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al.
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293

Page 38 of 42

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al.
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293

Page 39 of 42

Appendix X. Test Dashboard: Half Round Input with Model Variation

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al.
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293

Page 40 of 42

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al.
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293

Page 41 of 42

Appendix XI. Test Dashboard: Half Round Input with Model Variation Cross-Plots

Proceedings of the 2022 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Transient Torque Response Modeling of Tracked Vehicle Suspension Rotary Dampers, Ostberg, et al.
DISTRIBUTION A. Approved for public release, distribution unlimited. OPSEC# 7293

Page 42 of 42

	1. INTRODUCTION
	2. BACKGROUND
	2.1. GVSC Damper Test System
	2.2. Damper Model Summaries
	2.3. Damper Model Performance

	3. DAMPER CURVE GENERATION
	3.1. Initial Testing
	3.2. Smoothing of Velocity
	3.3. Testing Limitations
	3.4. Refinement of Initial Testing

	4. DAMPER CONFIGURATION AND MODELING MOTIVATION
	4.1. Damper Construction
	4.2. Steady state versus transient model
	4.3. Steady state model
	4.4. Steady state model flow regimes
	4.5. Numerical Issue with Friction Term
	4.6. Invertibility of Damper Curve
	4.7. Damper Curve Comparison

	5. DAMPER COMPLIANCE MODELING
	5.1. Model Results

	6. Conclusion
	7. REFERENCES
	8. APPENDIXES

